Source code for pvlib.irradiance

"""
The ``irradiance`` module contains functions for modeling global
horizontal irradiance, direct normal irradiance, diffuse horizontal
irradiance, and total irradiance under various conditions.
"""

from __future__ import division

import logging

import datetime
from collections import OrderedDict
from functools import partial

import numpy as np
import pandas as pd

from pvlib import tools
from pvlib import solarposition
from pvlib import atmosphere

pvl_logger = logging.getLogger('pvlib')

SURFACE_ALBEDOS = {'urban': 0.18,
                   'grass': 0.20,
                   'fresh grass': 0.26,
                   'soil': 0.17,
                   'sand': 0.40,
                   'snow': 0.65,
                   'fresh snow': 0.75,
                   'asphalt': 0.12,
                   'concrete': 0.30,
                   'aluminum': 0.85,
                   'copper': 0.74,
                   'fresh steel': 0.35,
                   'dirty steel': 0.08}


[docs]def extraradiation(datetime_or_doy, solar_constant=1366.1, method='spencer', epoch_year=2014, **kwargs): """ Determine extraterrestrial radiation from day of year. Parameters ---------- datetime_or_doy : numeric, array, date, datetime, Timestamp, DatetimeIndex Day of year, array of days of year, or datetime-like object solar_constant : float The solar constant. method : string The method by which the ET radiation should be calculated. Options include ``'pyephem', 'spencer', 'asce', 'nrel'``. epoch_year : int The year in which a day of year input will be calculated. Only applies to day of year input used with the pyephem or nrel methods. kwargs : Passed to solarposition.nrel_earthsun_distance Returns ------- dni_extra : float, array, or Series The extraterrestrial radiation present in watts per square meter on a surface which is normal to the sun. Pandas Timestamp and DatetimeIndex inputs will yield a Pandas TimeSeries. All other inputs will yield a float or an array of floats. References ---------- [1] M. Reno, C. Hansen, and J. Stein, "Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis", Sandia National Laboratories, SAND2012-2389, 2012. [2] <http://solardat.uoregon.edu/SolarRadiationBasics.html>, Eqs. SR1 and SR2 [3] Partridge, G. W. and Platt, C. M. R. 1976. Radiative Processes in Meteorology and Climatology. [4] Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of Thermal Processes, 2nd edn. J. Wiley and Sons, New York. """ # This block will set the functions that can be used to convert the # inputs to either day of year or pandas DatetimeIndex, and the # functions that will yield the appropriate output type. It's # complicated because there are many day-of-year-like input types, # and the different algorithms need different types. Maybe you have # a better way to do it. if isinstance(datetime_or_doy, pd.DatetimeIndex): to_doy = tools._pandas_to_doy # won't be evaluated unless necessary to_datetimeindex = lambda x: datetime_or_doy to_output = partial(pd.Series, index=datetime_or_doy) elif isinstance(datetime_or_doy, pd.Timestamp): to_doy = tools._pandas_to_doy to_datetimeindex = \ tools._datetimelike_scalar_to_datetimeindex to_output = tools._scalar_out elif isinstance(datetime_or_doy, (datetime.date, datetime.datetime, np.datetime64)): to_doy = tools._datetimelike_scalar_to_doy to_datetimeindex = \ tools._datetimelike_scalar_to_datetimeindex to_output = tools._scalar_out elif np.isscalar(datetime_or_doy): # ints and floats of various types to_doy = lambda x: datetime_or_doy to_datetimeindex = partial(tools._doy_to_datetimeindex, epoch_year=epoch_year) to_output = tools._scalar_out else: # assume that we have an array-like object of doy to_doy = lambda x: datetime_or_doy to_datetimeindex = partial(tools._doy_to_datetimeindex, epoch_year=epoch_year) to_output = tools._array_out method = method.lower() if method == 'asce': B = solarposition._calculate_simple_day_angle(to_doy(datetime_or_doy)) RoverR0sqrd = 1 + 0.033 * np.cos(B) elif method == 'spencer': B = solarposition._calculate_simple_day_angle(to_doy(datetime_or_doy)) RoverR0sqrd = (1.00011 + 0.034221 * np.cos(B) + 0.00128 * np.sin(B) + 0.000719 * np.cos(2 * B) + 7.7e-05 * np.sin(2 * B)) elif method == 'pyephem': times = to_datetimeindex(datetime_or_doy) RoverR0sqrd = solarposition.pyephem_earthsun_distance(times) ** (-2) elif method == 'nrel': times = to_datetimeindex(datetime_or_doy) RoverR0sqrd = \ solarposition.nrel_earthsun_distance(times, **kwargs) ** (-2) else: raise ValueError('Invalid method: %s', method) Ea = solar_constant * RoverR0sqrd Ea = to_output(Ea) return Ea
[docs]def aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth): """ Calculates the dot product of the solar vector and the surface normal. Input all angles in degrees. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. Returns ------- projection : numeric Dot product of panel normal and solar angle. """ projection = ( tools.cosd(surface_tilt) * tools.cosd(solar_zenith) + tools.sind(surface_tilt) * tools.sind(solar_zenith) * tools.cosd(solar_azimuth - surface_azimuth)) try: projection.name = 'aoi_projection' except AttributeError: pass return projection
[docs]def aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth): """ Calculates the angle of incidence of the solar vector on a surface. This is the angle between the solar vector and the surface normal. Input all angles in degrees. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. Returns ------- aoi : numeric Angle of incidence in degrees. """ projection = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) aoi_value = np.rad2deg(np.arccos(projection)) try: aoi_value.name = 'aoi' except AttributeError: pass return aoi_value
[docs]def poa_horizontal_ratio(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth): """ Calculates the ratio of the beam components of the plane of array irradiance and the horizontal irradiance. Input all angles in degrees. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. Returns ------- ratio : numeric Ratio of the plane of array irradiance to the horizontal plane irradiance """ cos_poa_zen = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_solar_zenith = tools.cosd(solar_zenith) # ratio of titled and horizontal beam irradiance ratio = cos_poa_zen / cos_solar_zenith try: ratio.name = 'poa_ratio' except AttributeError: pass return ratio
[docs]def beam_component(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni): """ Calculates the beam component of the plane of array irradiance. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. dni : numeric Direct Normal Irradiance Returns ------- beam : numeric Beam component """ beam = dni * aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) beam = np.maximum(beam, 0) return beam
[docs]def total_irrad(surface_tilt, surface_azimuth, apparent_zenith, azimuth, dni, ghi, dhi, dni_extra=None, airmass=None, albedo=.25, surface_type=None, model='isotropic', model_perez='allsitescomposite1990', **kwargs): r""" Determine diffuse irradiance from the sky on a tilted surface. .. math:: I_{tot} = I_{beam} + I_{sky} + I_{ground} See the transposition function documentation for details. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. dni : numeric Direct Normal Irradiance ghi : numeric Global horizontal irradiance dhi : numeric Diffuse horizontal irradiance dni_extra : numeric Extraterrestrial direct normal irradiance airmass : numeric Airmass albedo : numeric Surface albedo surface_type : String Surface type. See grounddiffuse. model : String Irradiance model. model_perez : String See perez. Returns ------- irradiance : OrderedDict or DataFrame Contains keys/columns ``'poa_global', 'poa_direct', 'poa_sky_diffuse', 'poa_ground_diffuse'``. """ pvl_logger.debug('planeofarray.total_irrad()') solar_zenith = apparent_zenith solar_azimuth = azimuth beam = beam_component(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni) model = model.lower() if model == 'isotropic': sky = isotropic(surface_tilt, dhi) elif model in ['klucher', 'klutcher']: sky = klucher(surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth) elif model == 'haydavies': sky = haydavies(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith, solar_azimuth) elif model == 'reindl': sky = reindl(surface_tilt, surface_azimuth, dhi, dni, ghi, dni_extra, solar_zenith, solar_azimuth) elif model == 'king': sky = king(surface_tilt, dhi, ghi, solar_zenith) elif model == 'perez': sky = perez(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith, solar_azimuth, airmass, model=model_perez) else: raise ValueError('invalid model selection {}'.format(model)) ground = grounddiffuse(surface_tilt, ghi, albedo, surface_type) diffuse = sky + ground total = beam + diffuse all_irrad = OrderedDict() all_irrad['poa_global'] = total all_irrad['poa_direct'] = beam all_irrad['poa_diffuse'] = diffuse all_irrad['poa_sky_diffuse'] = sky all_irrad['poa_ground_diffuse'] = ground if isinstance(total, pd.Series): all_irrad = pd.DataFrame(all_irrad) return all_irrad
[docs]def globalinplane(aoi, dni, poa_sky_diffuse, poa_ground_diffuse): r''' Determine the three components on in-plane irradiance Combines in-plane irradaince compoents from the chosen diffuse translation, ground reflection and beam irradiance algorithms into the total in-plane irradiance. Parameters ---------- aoi : numeric Angle of incidence of solar rays with respect to the module surface, from :func:`aoi`. dni : numeric Direct normal irradiance (W/m^2), as measured from a TMY file or calculated with a clearsky model. poa_sky_diffuse : numeric Diffuse irradiance (W/m^2) in the plane of the modules, as calculated by a diffuse irradiance translation function poa_ground_diffuse : numeric Ground reflected irradiance (W/m^2) in the plane of the modules, as calculated by an albedo model (eg. :func:`grounddiffuse`) Returns ------- irrads : OrderedDict or DataFrame Contains the following keys: * ``poa_global`` : Total in-plane irradiance (W/m^2) * ``poa_direct`` : Total in-plane beam irradiance (W/m^2) * ``poa_diffuse`` : Total in-plane diffuse irradiance (W/m^2) Notes ------ Negative beam irradiation due to aoi :math:`> 90^{\circ}` or AOI :math:`< 0^{\circ}` is set to zero. ''' poa_direct = np.maximum(dni * np.cos(np.radians(aoi)), 0) poa_global = poa_direct + poa_sky_diffuse + poa_ground_diffuse poa_diffuse = poa_sky_diffuse + poa_ground_diffuse irrads = OrderedDict() irrads['poa_global'] = poa_global irrads['poa_direct'] = poa_direct irrads['poa_diffuse'] = poa_diffuse if isinstance(poa_direct, pd.Series): irrads = pd.DataFrame(irrads) return irrads
[docs]def grounddiffuse(surface_tilt, ghi, albedo=.25, surface_type=None): ''' Estimate diffuse irradiance from ground reflections given irradiance, albedo, and surface tilt Function to determine the portion of irradiance on a tilted surface due to ground reflections. Any of the inputs may be DataFrames or scalars. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. Tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90). ghi : numeric Global horizontal irradiance in W/m^2. albedo : numeric Ground reflectance, typically 0.1-0.4 for surfaces on Earth (land), may increase over snow, ice, etc. May also be known as the reflection coefficient. Must be >=0 and <=1. Will be overridden if surface_type is supplied. surface_type: None or string If not None, overrides albedo. String can be one of ``'urban', 'grass', 'fresh grass', 'snow', 'fresh snow', 'asphalt', 'concrete', 'aluminum', 'copper', 'fresh steel', 'dirty steel'``. Returns ------- grounddiffuse : numeric Ground reflected irradiances in W/m^2. References ---------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267. The calculation is the last term of equations 3, 4, 7, 8, 10, 11, and 12. [2] albedos from: http://pvpmc.org/modeling-steps/incident-irradiance/plane-of-array-poa-irradiance/calculating-poa-irradiance/poa-ground-reflected/albedo/ and http://en.wikipedia.org/wiki/Albedo ''' pvl_logger.debug('diffuse_ground.get_diffuse_ground()') if surface_type is not None: albedo = SURFACE_ALBEDOS[surface_type] pvl_logger.info('surface_type=%s mapped to albedo=%s', surface_type, albedo) diffuse_irrad = ghi * albedo * (1 - np.cos(np.radians(surface_tilt))) * 0.5 try: diffuse_irrad.name = 'diffuse_ground' except AttributeError: pass return diffuse_irrad
[docs]def isotropic(surface_tilt, dhi): r''' Determine diffuse irradiance from the sky on a tilted surface using the isotropic sky model. .. math:: I_{d} = DHI \frac{1 + \cos\beta}{2} Hottel and Woertz's model treats the sky as a uniform source of diffuse irradiance. Thus the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface can be found from the diffuse horizontal irradiance and the tilt angle of the surface. Parameters ---------- surface_tilt : numeric Surface tilt angle in decimal degrees. Tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) dhi : numeric Diffuse horizontal irradiance in W/m^2. DHI must be >=0. Returns ------- diffuse : numeric The sky diffuse component of the solar radiation. References ---------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 [2] Hottel, H.C., Woertz, B.B., 1942. Evaluation of flat-plate solar heat collector. Trans. ASME 64, 91. ''' pvl_logger.debug('diffuse_sky.isotropic()') sky_diffuse = dhi * (1 + tools.cosd(surface_tilt)) * 0.5 return sky_diffuse
[docs]def klucher(surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth): r''' Determine diffuse irradiance from the sky on a tilted surface using Klucher's 1979 model .. math:: I_{d} = DHI \frac{1 + \cos\beta}{2} (1 + F' \sin^3(\beta/2)) (1 + F' \cos^2\theta\sin^3\theta_z) where .. math:: F' = 1 - (I_{d0} / GHI) Klucher's 1979 model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, global horizontal irradiance, extraterrestrial irradiance, sun zenith angle, and sun azimuth angle. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. surface_tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. surface_azimuth must be >=0 and <=360. The Azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). dhi : numeric Diffuse horizontal irradiance in W/m^2. DHI must be >=0. ghi : numeric Global irradiance in W/m^2. DNI must be >=0. solar_zenith : numeric Apparent (refraction-corrected) zenith angles in decimal degrees. solar_zenith must be >=0 and <=180. solar_azimuth : numeric Sun azimuth angles in decimal degrees. solar_azimuth must be >=0 and <=360. The Azimuth convention is defined as degrees east of north (e.g. North = 0, East = 90, West = 270). Returns ------- diffuse : numeric The sky diffuse component of the solar radiation. References ---------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 [2] Klucher, T.M., 1979. Evaluation of models to predict insolation on tilted surfaces. Solar Energy 23 (2), 111-114. ''' pvl_logger.debug('diffuse_sky.klucher()') # zenith angle with respect to panel normal. cos_tt = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) F = 1 - ((dhi / ghi) ** 2) try: # fails with single point input F.fillna(0, inplace=True) except AttributeError: F = 0 term1 = 0.5 * (1 + tools.cosd(surface_tilt)) term2 = 1 + F * (tools.sind(0.5 * surface_tilt) ** 3) term3 = 1 + F * (cos_tt ** 2) * (tools.sind(solar_zenith) ** 3) sky_diffuse = dhi * term1 * term2 * term3 return sky_diffuse
[docs]def haydavies(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith=None, solar_azimuth=None, projection_ratio=None): r''' Determine diffuse irradiance from the sky on a tilted surface using Hay & Davies' 1980 model .. math:: I_{d} = DHI ( A R_b + (1 - A) (\frac{1 + \cos\beta}{2}) ) Hay and Davies' 1980 model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, extraterrestrial irradiance, sun zenith angle, and sun azimuth angle. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. The azimuth convention is defined as degrees east of north (e.g. North=0, South=180, East=90, West=270). dhi : numeric Diffuse horizontal irradiance in W/m^2. dni : numeric Direct normal irradiance in W/m^2. dni_extra : numeric Extraterrestrial normal irradiance in W/m^2. solar_zenith : None or numeric Solar apparent (refraction-corrected) zenith angles in decimal degrees. Must supply ``solar_zenith`` and ``solar_azimuth`` or supply ``projection_ratio``. solar_azimuth : None or numeric Solar azimuth angles in decimal degrees. Must supply ``solar_zenith`` and ``solar_azimuth`` or supply ``projection_ratio``. projection_ratio : None or numeric Ratio of angle of incidence projection to solar zenith angle projection. Must supply ``solar_zenith`` and ``solar_azimuth`` or supply ``projection_ratio``. Returns -------- sky_diffuse : numeric The sky diffuse component of the solar radiation. References ----------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 [2] Hay, J.E., Davies, J.A., 1980. Calculations of the solar radiation incident on an inclined surface. In: Hay, J.E., Won, T.K. (Eds.), Proc. of First Canadian Solar Radiation Data Workshop, 59. Ministry of Supply and Services, Canada. ''' pvl_logger.debug('diffuse_sky.haydavies()') # if necessary, calculate ratio of titled and horizontal beam irradiance if projection_ratio is None: cos_tt = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_solar_zenith = tools.cosd(solar_zenith) Rb = cos_tt / cos_solar_zenith else: Rb = projection_ratio # Anisotropy Index AI = dni / dni_extra # these are the () and [] sub-terms of the second term of eqn 7 term1 = 1 - AI term2 = 0.5 * (1 + tools.cosd(surface_tilt)) sky_diffuse = dhi * (AI * Rb + term1 * term2) sky_diffuse = np.maximum(sky_diffuse, 0) return sky_diffuse
[docs]def reindl(surface_tilt, surface_azimuth, dhi, dni, ghi, dni_extra, solar_zenith, solar_azimuth): r''' Determine diffuse irradiance from the sky on a tilted surface using Reindl's 1990 model .. math:: I_{d} = DHI (A R_b + (1 - A) (\frac{1 + \cos\beta}{2}) (1 + \sqrt{\frac{I_{hb}}{I_h}} \sin^3(\beta/2)) ) Reindl's 1990 model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, global horizontal irradiance, extraterrestrial irradiance, sun zenith angle, and sun azimuth angle. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. The azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). dhi : numeric diffuse horizontal irradiance in W/m^2. dni : numeric direct normal irradiance in W/m^2. ghi: numeric Global irradiance in W/m^2. dni_extra : numeric Extraterrestrial normal irradiance in W/m^2. solar_zenith : numeric Apparent (refraction-corrected) zenith angles in decimal degrees. solar_azimuth : numeric Sun azimuth angles in decimal degrees. The azimuth convention is defined as degrees east of north (e.g. North = 0, East = 90, West = 270). Returns ------- poa_sky_diffuse : numeric The sky diffuse component of the solar radiation. Notes ----- The poa_sky_diffuse calculation is generated from the Loutzenhiser et al. (2007) paper, equation 8. Note that I have removed the beam and ground reflectance portion of the equation and this generates ONLY the diffuse radiation from the sky and circumsolar, so the form of the equation varies slightly from equation 8. References ---------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 [2] Reindl, D.T., Beckmann, W.A., Duffie, J.A., 1990a. Diffuse fraction correlations. Solar Energy 45(1), 1-7. [3] Reindl, D.T., Beckmann, W.A., Duffie, J.A., 1990b. Evaluation of hourly tilted surface radiation models. Solar Energy 45(1), 9-17. ''' pvl_logger.debug('diffuse_sky.reindl()') cos_tt = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_solar_zenith = tools.cosd(solar_zenith) # ratio of titled and horizontal beam irradiance Rb = cos_tt / cos_solar_zenith # Anisotropy Index AI = dni / dni_extra # DNI projected onto horizontal HB = dni * cos_solar_zenith HB = np.maximum(HB, 0) # these are the () and [] sub-terms of the second term of eqn 8 term1 = 1 - AI term2 = 0.5 * (1 + tools.cosd(surface_tilt)) term3 = 1 + np.sqrt(HB / ghi) * (tools.sind(0.5 * surface_tilt) ** 3) sky_diffuse = dhi * (AI * Rb + term1 * term2 * term3) sky_diffuse = np.maximum(sky_diffuse, 0) return sky_diffuse
[docs]def king(surface_tilt, dhi, ghi, solar_zenith): ''' Determine diffuse irradiance from the sky on a tilted surface using the King model. King's model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, diffuse horizontal irradiance, global horizontal irradiance, and sun zenith angle. Note that this model is not well documented and has not been published in any fashion (as of January 2012). Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) dhi : numeric Diffuse horizontal irradiance in W/m^2. ghi : numeric Global horizontal irradiance in W/m^2. solar_zenith : numeric Apparent (refraction-corrected) zenith angles in decimal degrees. Returns -------- poa_sky_diffuse : numeric The diffuse component of the solar radiation. ''' pvl_logger.debug('diffuse_sky.king()') sky_diffuse = (dhi * ((1 + tools.cosd(surface_tilt))) / 2 + ghi * ((0.012 * solar_zenith - 0.04)) * ((1 - tools.cosd(surface_tilt))) / 2) sky_diffuse = np.maximum(sky_diffuse, 0) return sky_diffuse
[docs]def perez(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith, solar_azimuth, airmass, model='allsitescomposite1990', return_components=False): ''' Determine diffuse irradiance from the sky on a tilted surface using one of the Perez models. Perez models determine the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, extraterrestrial irradiance, sun zenith angle, sun azimuth angle, and relative (not pressure-corrected) airmass. Optionally a selector may be used to use any of Perez's model coefficient sets. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. surface_tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. surface_azimuth must be >=0 and <=360. The azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). dhi : numeric Diffuse horizontal irradiance in W/m^2. DHI must be >=0. dni : numeric Direct normal irradiance in W/m^2. DNI must be >=0. dni_extra : numeric Extraterrestrial normal irradiance in W/m^2. solar_zenith : numeric apparent (refraction-corrected) zenith angles in decimal degrees. solar_zenith must be >=0 and <=180. solar_azimuth : numeric Sun azimuth angles in decimal degrees. solar_azimuth must be >=0 and <=360. The azimuth convention is defined as degrees east of north (e.g. North = 0, East = 90, West = 270). airmass : numeric Relative (not pressure-corrected) airmass values. If AM is a DataFrame it must be of the same size as all other DataFrame inputs. AM must be >=0 (careful using the 1/sec(z) model of AM generation) model : string (optional, default='allsitescomposite1990') A string which selects the desired set of Perez coefficients. If model is not provided as an input, the default, '1990' will be used. All possible model selections are: * '1990' * 'allsitescomposite1990' (same as '1990') * 'allsitescomposite1988' * 'sandiacomposite1988' * 'usacomposite1988' * 'france1988' * 'phoenix1988' * 'elmonte1988' * 'osage1988' * 'albuquerque1988' * 'capecanaveral1988' * 'albany1988' return_components: bool (optional, default=False) Flag used to decide whether to return the calculated diffuse components or not. Returns -------- sky_diffuse : numeric The sky diffuse component of the solar radiation on a tilted surface. Array input is currently converted to Series output. References ---------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 [2] Perez, R., Seals, R., Ineichen, P., Stewart, R., Menicucci, D., 1987. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39(3), 221-232. [3] Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R., 1990. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44 (5), 271-289. [4] Perez, R. et. al 1988. "The Development and Verification of the Perez Diffuse Radiation Model". SAND88-7030 ''' kappa = 1.041 # for solar_zenith in radians z = np.radians(solar_zenith) # convert to radians # delta is the sky's "brightness" delta = dhi * airmass / dni_extra # epsilon is the sky's "clearness" eps = ((dhi + dni) / dhi + kappa * (z ** 3)) / (1 + kappa * (z ** 3)) # numpy indexing below will not work with a Series if isinstance(eps, pd.Series): eps = eps.values # Perez et al define clearness bins according to the following # rules. 1 = overcast ... 8 = clear (these names really only make # sense for small zenith angles, but...) these values will # eventually be used as indicies for coeffecient look ups ebin = np.zeros_like(eps, dtype=np.int8) ebin[eps < 1.065] = 1 ebin[(eps >= 1.065) & (eps < 1.23)] = 2 ebin[(eps >= 1.23) & (eps < 1.5)] = 3 ebin[(eps >= 1.5) & (eps < 1.95)] = 4 ebin[(eps >= 1.95) & (eps < 2.8)] = 5 ebin[(eps >= 2.8) & (eps < 4.5)] = 6 ebin[(eps >= 4.5) & (eps < 6.2)] = 7 ebin[eps >= 6.2] = 8 # correct for 0 indexing in coeffecient lookup # later, ebin = -1 will yield nan coefficients ebin -= 1 # The various possible sets of Perez coefficients are contained # in a subfunction to clean up the code. F1c, F2c = _get_perez_coefficients(model) # results in invalid eps (ebin = -1) being mapped to nans nans = np.array([np.nan, np.nan, np.nan]) F1c = np.vstack((F1c, nans)) F2c = np.vstack((F2c, nans)) F1 = (F1c[ebin, 0] + F1c[ebin, 1] * delta + F1c[ebin, 2] * z) F1 = np.maximum(F1, 0) F2 = (F2c[ebin, 0] + F2c[ebin, 1] * delta + F2c[ebin, 2] * z) F2 = np.maximum(F2, 0) A = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) A = np.maximum(A, 0) B = tools.cosd(solar_zenith) B = np.maximum(B, tools.cosd(85)) # Calculate Diffuse POA from sky dome term1 = 0.5 * (1 - F1) * (1 + tools.cosd(surface_tilt)) term2 = F1 * A / B term3 = F2 * tools.sind(surface_tilt) sky_diffuse = np.maximum(dhi * (term1 + term2 + term3), 0) # we've preserved the input type until now, so don't ruin it! if isinstance(sky_diffuse, pd.Series): sky_diffuse[np.isnan(airmass)] = 0 else: sky_diffuse = np.where(np.isnan(airmass), 0, sky_diffuse) if return_components: diffuse_components = OrderedDict() # Calculate the different components diffuse_components['isotropic'] = dhi * term1 diffuse_components['circumsolar'] = dhi * term2 diffuse_components['horizon'] = dhi * term3 # Set values of components to 0 when sky_diffuse is 0 mask = sky_diffuse == 0 if isinstance(sky_diffuse, pd.Series): diffuse_components = pd.DataFrame(diffuse_components) diffuse_components.ix[mask] = 0 else: diffuse_components = {k: np.where(mask, 0, v) for k, v in diffuse_components.items()} return sky_diffuse, diffuse_components else: return sky_diffuse
[docs]def disc(ghi, zenith, datetime_or_doy, pressure=101325): """ Estimate Direct Normal Irradiance from Global Horizontal Irradiance using the DISC model. The DISC algorithm converts global horizontal irradiance to direct normal irradiance through empirical relationships between the global and direct clearness indices. Parameters ---------- ghi : numeric Global horizontal irradiance in W/m^2. solar_zenith : numeric True (not refraction-corrected) solar zenith angles in decimal degrees. datetime_or_doy : int, float, array, pd.DatetimeIndex Day of year or array of days of year e.g. pd.DatetimeIndex.dayofyear, or pd.DatetimeIndex. pressure : numeric Site pressure in Pascal. Returns ------- output : OrderedDict or DataFrame Contains the following keys: * ``dni``: The modeled direct normal irradiance in W/m^2 provided by the Direct Insolation Simulation Code (DISC) model. * ``kt``: Ratio of global to extraterrestrial irradiance on a horizontal plane. * ``airmass``: Airmass References ---------- [1] Maxwell, E. L., "A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation", Technical Report No. SERI/TR-215-3087, Golden, CO: Solar Energy Research Institute, 1987. [2] J.W. "Fourier series representation of the position of the sun". Found at: http://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html on January 12, 2012 See Also -------- atmosphere.alt2pres dirint """ # this is the I0 calculation from the reference I0 = extraradiation(datetime_or_doy, 1370, 'spencer') I0h = I0 * np.cos(np.radians(zenith)) am = atmosphere.relativeairmass(zenith, model='kasten1966') am = atmosphere.absoluteairmass(am, pressure) kt = ghi / I0h kt = np.maximum(kt, 0) # powers of kt will be used repeatedly, so compute only once kt2 = kt * kt # about the same as kt ** 2 kt3 = kt2 * kt # 5-10x faster than kt ** 3 bools = (kt <= 0.6) a = np.where(bools, 0.512 - 1.56*kt + 2.286*kt2 - 2.222*kt3, -5.743 + 21.77*kt - 27.49*kt2 + 11.56*kt3) b = np.where(bools, 0.37 + 0.962*kt, 41.4 - 118.5*kt + 66.05*kt2 + 31.9*kt3) c = np.where(bools, -0.28 + 0.932*kt - 2.048*kt2, -47.01 + 184.2*kt - 222.0*kt2 + 73.81*kt3) delta_kn = a + b * np.exp(c*am) Knc = 0.866 - 0.122*am + 0.0121*am**2 - 0.000653*am**3 + 1.4e-05*am**4 Kn = Knc - delta_kn dni = Kn * I0 dni = np.where((zenith > 87) | (ghi < 0) | (dni < 0), 0, dni) output = OrderedDict() output['dni'] = dni output['kt'] = kt output['airmass'] = am if isinstance(datetime_or_doy, pd.DatetimeIndex): output = pd.DataFrame(output, index=datetime_or_doy) return output
[docs]def dirint(ghi, zenith, times, pressure=101325., use_delta_kt_prime=True, temp_dew=None): """ Determine DNI from GHI using the DIRINT modification of the DISC model. Implements the modified DISC model known as "DIRINT" introduced in [1]. DIRINT predicts direct normal irradiance (DNI) from measured global horizontal irradiance (GHI). DIRINT improves upon the DISC model by using time-series GHI data and dew point temperature information. The effectiveness of the DIRINT model improves with each piece of information provided. Parameters ---------- ghi : array-like Global horizontal irradiance in W/m^2. zenith : array-like True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. times : DatetimeIndex pressure : float or array-like The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool Indicates if the user would like to utilize the time-series nature of the GHI measurements. A value of ``False`` will not use the time-series improvements, any other numeric value will use time-series improvements. It is recommended that time-series data only be used if the time between measured data points is less than 1.5 hours. If none of the input arguments are vectors, then time-series improvements are not used (because it's not a time-series). If True, input data must be Series. temp_dew : None, float, or array-like Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a DewPtTemp=NaN does not have dew point improvements applied. If DewPtTemp is not provided, then dew point improvements are not applied. Returns ------- dni : array-like The modeled direct normal irradiance in W/m^2 provided by the DIRINT model. Notes ----- DIRINT model requires time series data (ie. one of the inputs must be a vector of length > 2). References ---------- [1] Perez, R., P. Ineichen, E. Maxwell, R. Seals and A. Zelenka, (1992). "Dynamic Global-to-Direct Irradiance Conversion Models". ASHRAE Transactions-Research Series, pp. 354-369 [2] Maxwell, E. L., "A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation", Technical Report No. SERI/TR-215-3087, Golden, CO: Solar Energy Research Institute, 1987. """ disc_out = disc(ghi, zenith, times, pressure=pressure) dni = disc_out['dni'] kt = disc_out['kt'] am = disc_out['airmass'] kt_prime = kt / (1.031 * np.exp(-1.4 / (0.9 + 9.4 / am)) + 0.1) kt_prime = np.minimum(kt_prime, 0.82) # From SRRL code # wholmgren: # the use_delta_kt_prime statement is a port of the MATLAB code. # I am confused by the abs() in the delta_kt_prime calculation. # It is not the absolute value of the central difference. # current implementation requires that kt_prime is a Series if use_delta_kt_prime: delta_kt_prime = 0.5*((kt_prime - kt_prime.shift(1)).abs().add( (kt_prime - kt_prime.shift(-1)).abs(), fill_value=0)) else: delta_kt_prime = pd.Series(-1, index=times) if temp_dew is not None: w = pd.Series(np.exp(0.07 * temp_dew - 0.075), index=times) else: w = pd.Series(-1, index=times) # @wholmgren: the following bin assignments use MATLAB's 1-indexing. # Later, we'll subtract 1 to conform to Python's 0-indexing. # Create kt_prime bins kt_prime_bin = pd.Series(0, index=times, dtype=np.int64) kt_prime_bin[(kt_prime >= 0) & (kt_prime < 0.24)] = 1 kt_prime_bin[(kt_prime >= 0.24) & (kt_prime < 0.4)] = 2 kt_prime_bin[(kt_prime >= 0.4) & (kt_prime < 0.56)] = 3 kt_prime_bin[(kt_prime >= 0.56) & (kt_prime < 0.7)] = 4 kt_prime_bin[(kt_prime >= 0.7) & (kt_prime < 0.8)] = 5 kt_prime_bin[(kt_prime >= 0.8) & (kt_prime <= 1)] = 6 # Create zenith angle bins zenith_bin = pd.Series(0, index=times, dtype=np.int64) zenith_bin[(zenith >= 0) & (zenith < 25)] = 1 zenith_bin[(zenith >= 25) & (zenith < 40)] = 2 zenith_bin[(zenith >= 40) & (zenith < 55)] = 3 zenith_bin[(zenith >= 55) & (zenith < 70)] = 4 zenith_bin[(zenith >= 70) & (zenith < 80)] = 5 zenith_bin[(zenith >= 80)] = 6 # Create the bins for w based on dew point temperature w_bin = pd.Series(0, index=times, dtype=np.int64) w_bin[(w >= 0) & (w < 1)] = 1 w_bin[(w >= 1) & (w < 2)] = 2 w_bin[(w >= 2) & (w < 3)] = 3 w_bin[(w >= 3)] = 4 w_bin[(w == -1)] = 5 # Create delta_kt_prime binning. delta_kt_prime_bin = pd.Series(0, index=times, dtype=np.int64) delta_kt_prime_bin[(delta_kt_prime >= 0) & (delta_kt_prime < 0.015)] = 1 delta_kt_prime_bin[(delta_kt_prime >= 0.015) & (delta_kt_prime < 0.035)] = 2 delta_kt_prime_bin[(delta_kt_prime >= 0.035) & (delta_kt_prime < 0.07)] = 3 delta_kt_prime_bin[(delta_kt_prime >= 0.07) & (delta_kt_prime < 0.15)] = 4 delta_kt_prime_bin[(delta_kt_prime >= 0.15) & (delta_kt_prime < 0.3)] = 5 delta_kt_prime_bin[(delta_kt_prime >= 0.3) & (delta_kt_prime <= 1)] = 6 delta_kt_prime_bin[delta_kt_prime == -1] = 7 # get the coefficients coeffs = _get_dirint_coeffs() # subtract 1 to account for difference between MATLAB-style bin # assignment and Python-style array lookup. dirint_coeffs = coeffs[kt_prime_bin-1, zenith_bin-1, delta_kt_prime_bin-1, w_bin-1] # convert unassigned bins to nan dirint_coeffs = np.where((kt_prime_bin == 0) | (zenith_bin == 0) | (w_bin == 0) | (delta_kt_prime_bin == 0), np.nan, dirint_coeffs) dni *= dirint_coeffs return dni
[docs]def dirindex(ghi, ghi_clearsky, dni_clearsky, zenith, times, pressure=101325., use_delta_kt_prime=True, temp_dew=None): """ Determine DNI from GHI using the DIRINDEX model, which is a modification of the DIRINT model with information from a clear sky model. DIRINDEX [1] improves upon the DIRINT model by taking into account turbidity when used with the Ineichen clear sky model results. Parameters ---------- ghi : array-like Global horizontal irradiance in W/m^2. ghi_clearsky : array-like Global horizontal irradiance from clear sky model, in W/m^2. dni_clearsky : array-like Direct normal irradiance from clear sky model, in W/m^2. zenith : array-like True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. times : DatetimeIndex pressure : float or array-like The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool Indicates if the user would like to utilize the time-series nature of the GHI measurements. A value of ``False`` will not use the time-series improvements, any other numeric value will use time-series improvements. It is recommended that time-series data only be used if the time between measured data points is less than 1.5 hours. If none of the input arguments are vectors, then time-series improvements are not used (because it's not a time-series). If True, input data must be Series. temp_dew : None, float, or array-like Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a DewPtTemp=NaN does not have dew point improvements applied. If DewPtTemp is not provided, then dew point improvements are not applied. Returns ------- dni : array-like The modeled direct normal irradiance in W/m^2. Notes ----- DIRINDEX model requires time series data (ie. one of the inputs must be a vector of length > 2). References ---------- [1] Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., & Vignola, F. (2002). A new operational model for satellite-derived irradiances: description and validation. Solar Energy, 73(5), 307-317. """ dni_dirint = dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew) dni_dirint_clearsky = dirint(ghi_clearsky, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew) dni_dirindex = dni_clearsky * dni_dirint / dni_dirint_clearsky dni_dirindex[dni_dirindex < 0] = 0. return dni_dirindex
[docs]def erbs(ghi, zenith, doy): r""" Estimate DNI and DHI from GHI using the Erbs model. The Erbs model [1]_ estimates the diffuse fraction DF from global horizontal irradiance through an empirical relationship between DF and the ratio of GHI to extraterrestrial irradiance, Kt. The function uses the diffuse fraction to compute DHI as .. math:: DHI = DF \times GHI DNI is then estimated as .. math:: DNI = (GHI - DHI)/\cos(Z) where Z is the zenith angle. Parameters ---------- ghi: numeric Global horizontal irradiance in W/m^2. zenith: numeric True (not refraction-corrected) zenith angles in decimal degrees. doy: scalar, array or DatetimeIndex The day of the year. Returns ------- data : OrderedDict or DataFrame Contains the following keys/columns: * ``dni``: the modeled direct normal irradiance in W/m^2. * ``dhi``: the modeled diffuse horizontal irradiance in W/m^2. * ``kt``: Ratio of global to extraterrestrial irradiance on a horizontal plane. References ---------- .. [1] D. G. Erbs, S. A. Klein and J. A. Duffie, Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation, Solar Energy 28(4), pp 293-302, 1982. Eq. 1 See also -------- dirint disc """ dni_extra = extraradiation(doy) # This Z needs to be the true Zenith angle, not apparent, # to get extraterrestrial horizontal radiation) i0_h = dni_extra * tools.cosd(zenith) kt = ghi / i0_h kt = np.maximum(kt, 0) # For Kt <= 0.22, set the diffuse fraction df = 1 - 0.09*kt # For Kt > 0.22 and Kt <= 0.8, set the diffuse fraction df = np.where((kt > 0.22) & (kt <= 0.8), 0.9511 - 0.1604*kt + 4.388*kt**2 - 16.638*kt**3 + 12.336*kt**4, df) # For Kt > 0.8, set the diffuse fraction df = np.where(kt > 0.8, 0.165, df) dhi = df * ghi dni = (ghi - dhi) / tools.cosd(zenith) data = OrderedDict() data['dni'] = dni data['dhi'] = dhi data['kt'] = kt if isinstance(dni, pd.Series): data = pd.DataFrame(data) return data
[docs]def liujordan(zenith, transmittance, airmass, pressure=101325., dni_extra=1367.0): ''' Determine DNI, DHI, GHI from extraterrestrial flux, transmittance, and optical air mass number. Liu and Jordan, 1960, developed a simplified direct radiation model. DHI is from an empirical equation for diffuse radiation from Liu and Jordan, 1960. Parameters ---------- zenith: pd.Series True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. transmittance: float Atmospheric transmittance between 0 and 1. pressure: float Air pressure dni_extra: float Direct irradiance incident at the top of the atmosphere. Returns ------- irradiance: DataFrame Modeled direct normal irradiance, direct horizontal irradiance, and global horizontal irradiance in W/m^2 References ---------- [1] Campbell, G. S., J. M. Norman (1998) An Introduction to Environmental Biophysics. 2nd Ed. New York: Springer. [2] Liu, B. Y., R. C. Jordan, (1960). "The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation". Solar Energy 4:1-19 ''' tao = transmittance dni = dni_extra*tao**airmass dhi = 0.3 * (1.0 - tao**airmass) * dni_extra * np.cos(np.radians(zenith)) ghi = dhi + dni * np.cos(np.radians(zenith)) irrads = OrderedDict() irrads['ghi'] = ghi irrads['dni'] = dni irrads['dhi'] = dhi if isinstance(ghi, pd.Series): irrads = pd.DataFrame(irrads) return irrads
def _get_perez_coefficients(perezmodel): ''' Find coefficients for the Perez model Parameters ---------- perezmodel : string (optional, default='allsitescomposite1990') a character string which selects the desired set of Perez coefficients. If model is not provided as an input, the default, '1990' will be used. All possible model selections are: * '1990' * 'allsitescomposite1990' (same as '1990') * 'allsitescomposite1988' * 'sandiacomposite1988' * 'usacomposite1988' * 'france1988' * 'phoenix1988' * 'elmonte1988' * 'osage1988' * 'albuquerque1988' * 'capecanaveral1988' * 'albany1988' Returns -------- F1coeffs, F2coeffs : (array, array) F1 and F2 coefficients for the Perez model References ---------- [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 [2] Perez, R., Seals, R., Ineichen, P., Stewart, R., Menicucci, D., 1987. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39(3), 221-232. [3] Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R., 1990. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44 (5), 271-289. [4] Perez, R. et. al 1988. "The Development and Verification of the Perez Diffuse Radiation Model". SAND88-7030 ''' coeffdict = { 'allsitescomposite1990': [ [-0.0080, 0.5880, -0.0620, -0.0600, 0.0720, -0.0220], [0.1300, 0.6830, -0.1510, -0.0190, 0.0660, -0.0290], [0.3300, 0.4870, -0.2210, 0.0550, -0.0640, -0.0260], [0.5680, 0.1870, -0.2950, 0.1090, -0.1520, -0.0140], [0.8730, -0.3920, -0.3620, 0.2260, -0.4620, 0.0010], [1.1320, -1.2370, -0.4120, 0.2880, -0.8230, 0.0560], [1.0600, -1.6000, -0.3590, 0.2640, -1.1270, 0.1310], [0.6780, -0.3270, -0.2500, 0.1560, -1.3770, 0.2510]], 'allsitescomposite1988': [ [-0.0180, 0.7050, -0.071, -0.0580, 0.1020, -0.0260], [0.1910, 0.6450, -0.1710, 0.0120, 0.0090, -0.0270], [0.4400, 0.3780, -0.2560, 0.0870, -0.1040, -0.0250], [0.7560, -0.1210, -0.3460, 0.1790, -0.3210, -0.0080], [0.9960, -0.6450, -0.4050, 0.2600, -0.5900, 0.0170], [1.0980, -1.2900, -0.3930, 0.2690, -0.8320, 0.0750], [0.9730, -1.1350, -0.3780, 0.1240, -0.2580, 0.1490], [0.6890, -0.4120, -0.2730, 0.1990, -1.6750, 0.2370]], 'sandiacomposite1988': [ [-0.1960, 1.0840, -0.0060, -0.1140, 0.1800, -0.0190], [0.2360, 0.5190, -0.1800, -0.0110, 0.0200, -0.0380], [0.4540, 0.3210, -0.2550, 0.0720, -0.0980, -0.0460], [0.8660, -0.3810, -0.3750, 0.2030, -0.4030, -0.0490], [1.0260, -0.7110, -0.4260, 0.2730, -0.6020, -0.0610], [0.9780, -0.9860, -0.3500, 0.2800, -0.9150, -0.0240], [0.7480, -0.9130, -0.2360, 0.1730, -1.0450, 0.0650], [0.3180, -0.7570, 0.1030, 0.0620, -1.6980, 0.2360]], 'usacomposite1988': [ [-0.0340, 0.6710, -0.0590, -0.0590, 0.0860, -0.0280], [0.2550, 0.4740, -0.1910, 0.0180, -0.0140, -0.0330], [0.4270, 0.3490, -0.2450, 0.0930, -0.1210, -0.0390], [0.7560, -0.2130, -0.3280, 0.1750, -0.3040, -0.0270], [1.0200, -0.8570, -0.3850, 0.2800, -0.6380, -0.0190], [1.0500, -1.3440, -0.3480, 0.2800, -0.8930, 0.0370], [0.9740, -1.5070, -0.3700, 0.1540, -0.5680, 0.1090], [0.7440, -1.8170, -0.2560, 0.2460, -2.6180, 0.2300]], 'france1988': [ [0.0130, 0.7640, -0.1000, -0.0580, 0.1270, -0.0230], [0.0950, 0.9200, -0.1520, 0, 0.0510, -0.0200], [0.4640, 0.4210, -0.2800, 0.0640, -0.0510, -0.0020], [0.7590, -0.0090, -0.3730, 0.2010, -0.3820, 0.0100], [0.9760, -0.4000, -0.4360, 0.2710, -0.6380, 0.0510], [1.1760, -1.2540, -0.4620, 0.2950, -0.9750, 0.1290], [1.1060, -1.5630, -0.3980, 0.3010, -1.4420, 0.2120], [0.9340, -1.5010, -0.2710, 0.4200, -2.9170, 0.2490]], 'phoenix1988': [ [-0.0030, 0.7280, -0.0970, -0.0750, 0.1420, -0.0430], [0.2790, 0.3540, -0.1760, 0.0300, -0.0550, -0.0540], [0.4690, 0.1680, -0.2460, 0.0480, -0.0420, -0.0570], [0.8560, -0.5190, -0.3400, 0.1760, -0.3800, -0.0310], [0.9410, -0.6250, -0.3910, 0.1880, -0.3600, -0.0490], [1.0560, -1.1340, -0.4100, 0.2810, -0.7940, -0.0650], [0.9010, -2.1390, -0.2690, 0.1180, -0.6650, 0.0460], [0.1070, 0.4810, 0.1430, -0.1110, -0.1370, 0.2340]], 'elmonte1988': [ [0.0270, 0.7010, -0.1190, -0.0580, 0.1070, -0.0600], [0.1810, 0.6710, -0.1780, -0.0790, 0.1940, -0.0350], [0.4760, 0.4070, -0.2880, 0.0540, -0.0320, -0.0550], [0.8750, -0.2180, -0.4030, 0.1870, -0.3090, -0.0610], [1.1660, -1.0140, -0.4540, 0.2110, -0.4100, -0.0440], [1.1430, -2.0640, -0.2910, 0.0970, -0.3190, 0.0530], [1.0940, -2.6320, -0.2590, 0.0290, -0.4220, 0.1470], [0.1550, 1.7230, 0.1630, -0.1310, -0.0190, 0.2770]], 'osage1988': [ [-0.3530, 1.4740, 0.0570, -0.1750, 0.3120, 0.0090], [0.3630, 0.2180, -0.2120, 0.0190, -0.0340, -0.0590], [-0.0310, 1.2620, -0.0840, -0.0820, 0.2310, -0.0170], [0.6910, 0.0390, -0.2950, 0.0910, -0.1310, -0.0350], [1.1820, -1.3500, -0.3210, 0.4080, -0.9850, -0.0880], [0.7640, 0.0190, -0.2030, 0.2170, -0.2940, -0.1030], [0.2190, 1.4120, 0.2440, 0.4710, -2.9880, 0.0340], [3.5780, 22.2310, -10.7450, 2.4260, 4.8920, -5.6870]], 'albuquerque1988': [ [0.0340, 0.5010, -0.0940, -0.0630, 0.1060, -0.0440], [0.2290, 0.4670, -0.1560, -0.0050, -0.0190, -0.0230], [0.4860, 0.2410, -0.2530, 0.0530, -0.0640, -0.0220], [0.8740, -0.3930, -0.3970, 0.1810, -0.3270, -0.0370], [1.1930, -1.2960, -0.5010, 0.2810, -0.6560, -0.0450], [1.0560, -1.7580, -0.3740, 0.2260, -0.7590, 0.0340], [0.9010, -4.7830, -0.1090, 0.0630, -0.9700, 0.1960], [0.8510, -7.0550, -0.0530, 0.0600, -2.8330, 0.3300]], 'capecanaveral1988': [ [0.0750, 0.5330, -0.1240, -0.0670, 0.0420, -0.0200], [0.2950, 0.4970, -0.2180, -0.0080, 0.0030, -0.0290], [0.5140, 0.0810, -0.2610, 0.0750, -0.1600, -0.0290], [0.7470, -0.3290, -0.3250, 0.1810, -0.4160, -0.0300], [0.9010, -0.8830, -0.2970, 0.1780, -0.4890, 0.0080], [0.5910, -0.0440, -0.1160, 0.2350, -0.9990, 0.0980], [0.5370, -2.4020, 0.3200, 0.1690, -1.9710, 0.3100], [-0.8050, 4.5460, 1.0720, -0.2580, -0.9500, 0.7530]], 'albany1988': [ [0.0120, 0.5540, -0.0760, -0.0520, 0.0840, -0.0290], [0.2670, 0.4370, -0.1940, 0.0160, 0.0220, -0.0360], [0.4200, 0.3360, -0.2370, 0.0740, -0.0520, -0.0320], [0.6380, -0.0010, -0.2810, 0.1380, -0.1890, -0.0120], [1.0190, -1.0270, -0.3420, 0.2710, -0.6280, 0.0140], [1.1490, -1.9400, -0.3310, 0.3220, -1.0970, 0.0800], [1.4340, -3.9940, -0.4920, 0.4530, -2.3760, 0.1170], [1.0070, -2.2920, -0.4820, 0.3900, -3.3680, 0.2290]], } array = np.array(coeffdict[perezmodel]) F1coeffs = array[:, 0:3] F2coeffs = array[:, 3:7] return F1coeffs, F2coeffs def _get_dirint_coeffs(): """ A place to stash the dirint coefficients. Returns ------- np.array with shape ``(6, 6, 7, 5)``. Ordering is ``[kt_prime_bin, zenith_bin, delta_kt_prime_bin, w_bin]`` """ # To allow for maximum copy/paste from the MATLAB 1-indexed code, # we create and assign values to an oversized array. # Then, we return the [1:, 1:, :, :] slice. coeffs = np.zeros((7, 7, 7, 5)) coeffs[1, 1, :, :] = [ [0.385230, 0.385230, 0.385230, 0.462880, 0.317440], [0.338390, 0.338390, 0.221270, 0.316730, 0.503650], [0.235680, 0.235680, 0.241280, 0.157830, 0.269440], [0.830130, 0.830130, 0.171970, 0.841070, 0.457370], [0.548010, 0.548010, 0.478000, 0.966880, 1.036370], [0.548010, 0.548010, 1.000000, 3.012370, 1.976540], [0.582690, 0.582690, 0.229720, 0.892710, 0.569950]] coeffs[1, 2, :, :] = [ [0.131280, 0.131280, 0.385460, 0.511070, 0.127940], [0.223710, 0.223710, 0.193560, 0.304560, 0.193940], [0.229970, 0.229970, 0.275020, 0.312730, 0.244610], [0.090100, 0.184580, 0.260500, 0.687480, 0.579440], [0.131530, 0.131530, 0.370190, 1.380350, 1.052270], [1.116250, 1.116250, 0.928030, 3.525490, 2.316920], [0.090100, 0.237000, 0.300040, 0.812470, 0.664970]] coeffs[1, 3, :, :] = [ [0.587510, 0.130000, 0.400000, 0.537210, 0.832490], [0.306210, 0.129830, 0.204460, 0.500000, 0.681640], [0.224020, 0.260620, 0.334080, 0.501040, 0.350470], [0.421540, 0.753970, 0.750660, 3.706840, 0.983790], [0.706680, 0.373530, 1.245670, 0.864860, 1.992630], [4.864400, 0.117390, 0.265180, 0.359180, 3.310820], [0.392080, 0.493290, 0.651560, 1.932780, 0.898730]] coeffs[1, 4, :, :] = [ [0.126970, 0.126970, 0.126970, 0.126970, 0.126970], [0.810820, 0.810820, 0.810820, 0.810820, 0.810820], [3.241680, 2.500000, 2.291440, 2.291440, 2.291440], [4.000000, 3.000000, 2.000000, 0.975430, 1.965570], [12.494170, 12.494170, 8.000000, 5.083520, 8.792390], [21.744240, 21.744240, 21.744240, 21.744240, 21.744240], [3.241680, 12.494170, 1.620760, 1.375250, 2.331620]] coeffs[1, 5, :, :] = [ [0.126970, 0.126970, 0.126970, 0.126970, 0.126970], [0.810820, 0.810820, 0.810820, 0.810820, 0.810820], [3.241680, 2.500000, 2.291440, 2.291440, 2.291440], [4.000000, 3.000000, 2.000000, 0.975430, 1.965570], [12.494170, 12.494170, 8.000000, 5.083520, 8.792390], [21.744240, 21.744240, 21.744240, 21.744240, 21.744240], [3.241680, 12.494170, 1.620760, 1.375250, 2.331620]] coeffs[1, 6, :, :] = [ [0.126970, 0.126970, 0.126970, 0.126970, 0.126970], [0.810820, 0.810820, 0.810820, 0.810820, 0.810820], [3.241680, 2.500000, 2.291440, 2.291440, 2.291440], [4.000000, 3.000000, 2.000000, 0.975430, 1.965570], [12.494170, 12.494170, 8.000000, 5.083520, 8.792390], [21.744240, 21.744240, 21.744240, 21.744240, 21.744240], [3.241680, 12.494170, 1.620760, 1.375250, 2.331620]] coeffs[2, 1, :, :] = [ [0.337440, 0.337440, 0.969110, 1.097190, 1.116080], [0.337440, 0.337440, 0.969110, 1.116030, 0.623900], [0.337440, 0.337440, 1.530590, 1.024420, 0.908480], [0.584040, 0.584040, 0.847250, 0.914940, 1.289300], [0.337440, 0.337440, 0.310240, 1.435020, 1.852830], [0.337440, 0.337440, 1.015010, 1.097190, 2.117230], [0.337440, 0.337440, 0.969110, 1.145730, 1.476400]] coeffs[2, 2, :, :] = [ [0.300000, 0.300000, 0.700000, 1.100000, 0.796940], [0.219870, 0.219870, 0.526530, 0.809610, 0.649300], [0.386650, 0.386650, 0.119320, 0.576120, 0.685460], [0.746730, 0.399830, 0.470970, 0.986530, 0.785370], [0.575420, 0.936700, 1.649200, 1.495840, 1.335590], [1.319670, 4.002570, 1.276390, 2.644550, 2.518670], [0.665190, 0.678910, 1.012360, 1.199940, 0.986580]] coeffs[2, 3, :, :] = [ [0.378870, 0.974060, 0.500000, 0.491880, 0.665290], [0.105210, 0.263470, 0.407040, 0.553460, 0.582590], [0.312900, 0.345240, 1.144180, 0.854790, 0.612280], [0.119070, 0.365120, 0.560520, 0.793720, 0.802600], [0.781610, 0.837390, 1.270420, 1.537980, 1.292950], [1.152290, 1.152290, 1.492080, 1.245370, 2.177100], [0.424660, 0.529550, 0.966910, 1.033460, 0.958730]] coeffs[2, 4, :, :] = [ [0.310590, 0.714410, 0.252450, 0.500000, 0.607600], [0.975190, 0.363420, 0.500000, 0.400000, 0.502800], [0.175580, 0.196250, 0.476360, 1.072470, 0.490510], [0.719280, 0.698620, 0.657770, 1.190840, 0.681110], [0.426240, 1.464840, 0.678550, 1.157730, 0.978430], [2.501120, 1.789130, 1.387090, 2.394180, 2.394180], [0.491640, 0.677610, 0.685610, 1.082400, 0.735410]] coeffs[2, 5, :, :] = [ [0.597000, 0.500000, 0.300000, 0.310050, 0.413510], [0.314790, 0.336310, 0.400000, 0.400000, 0.442460], [0.166510, 0.460440, 0.552570, 1.000000, 0.461610], [0.401020, 0.559110, 0.403630, 1.016710, 0.671490], [0.400360, 0.750830, 0.842640, 1.802600, 1.023830], [3.315300, 1.510380, 2.443650, 1.638820, 2.133990], [0.530790, 0.745850, 0.693050, 1.458040, 0.804500]] coeffs[2, 6, :, :] = [ [0.597000, 0.500000, 0.300000, 0.310050, 0.800920], [0.314790, 0.336310, 0.400000, 0.400000, 0.237040], [0.166510, 0.460440, 0.552570, 1.000000, 0.581990], [0.401020, 0.559110, 0.403630, 1.016710, 0.898570], [0.400360, 0.750830, 0.842640, 1.802600, 3.400390], [3.315300, 1.510380, 2.443650, 1.638820, 2.508780], [0.204340, 1.157740, 2.003080, 2.622080, 1.409380]] coeffs[3, 1, :, :] = [ [1.242210, 1.242210, 1.242210, 1.242210, 1.242210], [0.056980, 0.056980, 0.656990, 0.656990, 0.925160], [0.089090, 0.089090, 1.040430, 1.232480, 1.205300], [1.053850, 1.053850, 1.399690, 1.084640, 1.233340], [1.151540, 1.151540, 1.118290, 1.531640, 1.411840], [1.494980, 1.494980, 1.700000, 1.800810, 1.671600], [1.018450, 1.018450, 1.153600, 1.321890, 1.294670]] coeffs[3, 2, :, :] = [ [0.700000, 0.700000, 1.023460, 0.700000, 0.945830], [0.886300, 0.886300, 1.333620, 0.800000, 1.066620], [0.902180, 0.902180, 0.954330, 1.126690, 1.097310], [1.095300, 1.075060, 1.176490, 1.139470, 1.096110], [1.201660, 1.201660, 1.438200, 1.256280, 1.198060], [1.525850, 1.525850, 1.869160, 1.985410, 1.911590], [1.288220, 1.082810, 1.286370, 1.166170, 1.119330]] coeffs[3, 3, :, :] = [ [0.600000, 1.029910, 0.859890, 0.550000, 0.813600], [0.604450, 1.029910, 0.859890, 0.656700, 0.928840], [0.455850, 0.750580, 0.804930, 0.823000, 0.911000], [0.526580, 0.932310, 0.908620, 0.983520, 0.988090], [1.036110, 1.100690, 0.848380, 1.035270, 1.042380], [1.048440, 1.652720, 0.900000, 2.350410, 1.082950], [0.817410, 0.976160, 0.861300, 0.974780, 1.004580]] coeffs[3, 4, :, :] = [ [0.782110, 0.564280, 0.600000, 0.600000, 0.665740], [0.894480, 0.680730, 0.541990, 0.800000, 0.669140], [0.487460, 0.818950, 0.841830, 0.872540, 0.709040], [0.709310, 0.872780, 0.908480, 0.953290, 0.844350], [0.863920, 0.947770, 0.876220, 1.078750, 0.936910], [1.280350, 0.866720, 0.769790, 1.078750, 0.975130], [0.725420, 0.869970, 0.868810, 0.951190, 0.829220]] coeffs[3, 5, :, :] = [ [0.791750, 0.654040, 0.483170, 0.409000, 0.597180], [0.566140, 0.948990, 0.971820, 0.653570, 0.718550], [0.648710, 0.637730, 0.870510, 0.860600, 0.694300], [0.637630, 0.767610, 0.925670, 0.990310, 0.847670], [0.736380, 0.946060, 1.117590, 1.029340, 0.947020], [1.180970, 0.850000, 1.050000, 0.950000, 0.888580], [0.700560, 0.801440, 0.961970, 0.906140, 0.823880]] coeffs[3, 6, :, :] = [ [0.500000, 0.500000, 0.586770, 0.470550, 0.629790], [0.500000, 0.500000, 1.056220, 1.260140, 0.658140], [0.500000, 0.500000, 0.631830, 0.842620, 0.582780], [0.554710, 0.734730, 0.985820, 0.915640, 0.898260], [0.712510, 1.205990, 0.909510, 1.078260, 0.885610], [1.899260, 1.559710, 1.000000, 1.150000, 1.120390], [0.653880, 0.793120, 0.903320, 0.944070, 0.796130]] coeffs[4, 1, :, :] = [ [1.000000, 1.000000, 1.050000, 1.170380, 1.178090], [0.960580, 0.960580, 1.059530, 1.179030, 1.131690], [0.871470, 0.871470, 0.995860, 1.141910, 1.114600], [1.201590, 1.201590, 0.993610, 1.109380, 1.126320], [1.065010, 1.065010, 0.828660, 0.939970, 1.017930], [1.065010, 1.065010, 0.623690, 1.119620, 1.132260], [1.071570, 1.071570, 0.958070, 1.114130, 1.127110]] coeffs[4, 2, :, :] = [ [0.950000, 0.973390, 0.852520, 1.092200, 1.096590], [0.804120, 0.913870, 0.980990, 1.094580, 1.042420], [0.737540, 0.935970, 0.999940, 1.056490, 1.050060], [1.032980, 1.034540, 0.968460, 1.032080, 1.015780], [0.900000, 0.977210, 0.945960, 1.008840, 0.969960], [0.600000, 0.750000, 0.750000, 0.844710, 0.899100], [0.926800, 0.965030, 0.968520, 1.044910, 1.032310]] coeffs[4, 3, :, :] = [ [0.850000, 1.029710, 0.961100, 1.055670, 1.009700], [0.818530, 0.960010, 0.996450, 1.081970, 1.036470], [0.765380, 0.953500, 0.948260, 1.052110, 1.000140], [0.775610, 0.909610, 0.927800, 0.987800, 0.952100], [1.000990, 0.881880, 0.875950, 0.949100, 0.893690], [0.902370, 0.875960, 0.807990, 0.942410, 0.917920], [0.856580, 0.928270, 0.946820, 1.032260, 0.972990]] coeffs[4, 4, :, :] = [ [0.750000, 0.857930, 0.983800, 1.056540, 0.980240], [0.750000, 0.987010, 1.013730, 1.133780, 1.038250], [0.800000, 0.947380, 1.012380, 1.091270, 0.999840], [0.800000, 0.914550, 0.908570, 0.999190, 0.915230], [0.778540, 0.800590, 0.799070, 0.902180, 0.851560], [0.680190, 0.317410, 0.507680, 0.388910, 0.646710], [0.794920, 0.912780, 0.960830, 1.057110, 0.947950]] coeffs[4, 5, :, :] = [ [0.750000, 0.833890, 0.867530, 1.059890, 0.932840], [0.979700, 0.971470, 0.995510, 1.068490, 1.030150], [0.858850, 0.987920, 1.043220, 1.108700, 1.044900], [0.802400, 0.955110, 0.911660, 1.045070, 0.944470], [0.884890, 0.766210, 0.885390, 0.859070, 0.818190], [0.615680, 0.700000, 0.850000, 0.624620, 0.669300], [0.835570, 0.946150, 0.977090, 1.049350, 0.979970]] coeffs[4, 6, :, :] = [ [0.689220, 0.809600, 0.900000, 0.789500, 0.853990], [0.854660, 0.852840, 0.938200, 0.923110, 0.955010], [0.938600, 0.932980, 1.010390, 1.043950, 1.041640], [0.843620, 0.981300, 0.951590, 0.946100, 0.966330], [0.694740, 0.814690, 0.572650, 0.400000, 0.726830], [0.211370, 0.671780, 0.416340, 0.297290, 0.498050], [0.843540, 0.882330, 0.911760, 0.898420, 0.960210]] coeffs[5, 1, :, :] = [ [1.054880, 1.075210, 1.068460, 1.153370, 1.069220], [1.000000, 1.062220, 1.013470, 1.088170, 1.046200], [0.885090, 0.993530, 0.942590, 1.054990, 1.012740], [0.920000, 0.950000, 0.978720, 1.020280, 0.984440], [0.850000, 0.908500, 0.839940, 0.985570, 0.962180], [0.800000, 0.800000, 0.810080, 0.950000, 0.961550], [1.038590, 1.063200, 1.034440, 1.112780, 1.037800]] coeffs[5, 2, :, :] = [ [1.017610, 1.028360, 1.058960, 1.133180, 1.045620], [0.920000, 0.998970, 1.033590, 1.089030, 1.022060], [0.912370, 0.949930, 0.979770, 1.020420, 0.981770], [0.847160, 0.935300, 0.930540, 0.955050, 0.946560], [0.880260, 0.867110, 0.874130, 0.972650, 0.883420], [0.627150, 0.627150, 0.700000, 0.774070, 0.845130], [0.973700, 1.006240, 1.026190, 1.071960, 1.017240]] coeffs[5, 3, :, :] = [ [1.028710, 1.017570, 1.025900, 1.081790, 1.024240], [0.924980, 0.985500, 1.014100, 1.092210, 0.999610], [0.828570, 0.934920, 0.994950, 1.024590, 0.949710], [0.900810, 0.901330, 0.928830, 0.979570, 0.913100], [0.761030, 0.845150, 0.805360, 0.936790, 0.853460], [0.626400, 0.546750, 0.730500, 0.850000, 0.689050], [0.957630, 0.985480, 0.991790, 1.050220, 0.987900]] coeffs[5, 4, :, :] = [ [0.992730, 0.993880, 1.017150, 1.059120, 1.017450], [0.975610, 0.987160, 1.026820, 1.075440, 1.007250], [0.871090, 0.933190, 0.974690, 0.979840, 0.952730], [0.828750, 0.868090, 0.834920, 0.905510, 0.871530], [0.781540, 0.782470, 0.767910, 0.764140, 0.795890], [0.743460, 0.693390, 0.514870, 0.630150, 0.715660], [0.934760, 0.957870, 0.959640, 0.972510, 0.981640]] coeffs[5, 5, :, :] = [ [0.965840, 0.941240, 0.987100, 1.022540, 1.011160], [0.988630, 0.994770, 0.976590, 0.950000, 1.034840], [0.958200, 1.018080, 0.974480, 0.920000, 0.989870], [0.811720, 0.869090, 0.812020, 0.850000, 0.821050], [0.682030, 0.679480, 0.632450, 0.746580, 0.738550], [0.668290, 0.445860, 0.500000, 0.678920, 0.696510], [0.926940, 0.953350, 0.959050, 0.876210, 0.991490]] coeffs[5, 6, :, :] = [ [0.948940, 0.997760, 0.850000, 0.826520, 0.998470], [1.017860, 0.970000, 0.850000, 0.700000, 0.988560], [1.000000, 0.950000, 0.850000, 0.606240, 0.947260], [1.000000, 0.746140, 0.751740, 0.598390, 0.725230], [0.922210, 0.500000, 0.376800, 0.517110, 0.548630], [0.500000, 0.450000, 0.429970, 0.404490, 0.539940], [0.960430, 0.881630, 0.775640, 0.596350, 0.937680]] coeffs[6, 1, :, :] = [ [1.030000, 1.040000, 1.000000, 1.000000, 1.049510], [1.050000, 0.990000, 0.990000, 0.950000, 0.996530], [1.050000, 0.990000, 0.990000, 0.820000, 0.971940], [1.050000, 0.790000, 0.880000, 0.820000, 0.951840], [1.000000, 0.530000, 0.440000, 0.710000, 0.928730], [0.540000, 0.470000, 0.500000, 0.550000, 0.773950], [1.038270, 0.920180, 0.910930, 0.821140, 1.034560]] coeffs[6, 2, :, :] = [ [1.041020, 0.997520, 0.961600, 1.000000, 1.035780], [0.948030, 0.980000, 0.900000, 0.950360, 0.977460], [0.950000, 0.977250, 0.869270, 0.800000, 0.951680], [0.951870, 0.850000, 0.748770, 0.700000, 0.883850], [0.900000, 0.823190, 0.727450, 0.600000, 0.839870], [0.850000, 0.805020, 0.692310, 0.500000, 0.788410], [1.010090, 0.895270, 0.773030, 0.816280, 1.011680]] coeffs[6, 3, :, :] = [ [1.022450, 1.004600, 0.983650, 1.000000, 1.032940], [0.943960, 0.999240, 0.983920, 0.905990, 0.978150], [0.936240, 0.946480, 0.850000, 0.850000, 0.930320], [0.816420, 0.885000, 0.644950, 0.817650, 0.865310], [0.742960, 0.765690, 0.561520, 0.700000, 0.827140], [0.643870, 0.596710, 0.474460, 0.600000, 0.651200], [0.971740, 0.940560, 0.714880, 0.864380, 1.001650]] coeffs[6, 4, :, :] = [ [0.995260, 0.977010, 1.000000, 1.000000, 1.035250], [0.939810, 0.975250, 0.939980, 0.950000, 0.982550], [0.876870, 0.879440, 0.850000, 0.900000, 0.917810], [0.873480, 0.873450, 0.751470, 0.850000, 0.863040], [0.761470, 0.702360, 0.638770, 0.750000, 0.783120], [0.734080, 0.650000, 0.600000, 0.650000, 0.715660], [0.942160, 0.919100, 0.770340, 0.731170, 0.995180]] coeffs[6, 5, :, :] = [ [0.952560, 0.916780, 0.920000, 0.900000, 1.005880], [0.928620, 0.994420, 0.900000, 0.900000, 0.983720], [0.913070, 0.850000, 0.850000, 0.800000, 0.924280], [0.868090, 0.807170, 0.823550, 0.600000, 0.844520], [0.769570, 0.719870, 0.650000, 0.550000, 0.733500], [0.580250, 0.650000, 0.600000, 0.500000, 0.628850], [0.904770, 0.852650, 0.708370, 0.493730, 0.949030]] coeffs[6, 6, :, :] = [ [0.911970, 0.800000, 0.800000, 0.800000, 0.956320], [0.912620, 0.682610, 0.750000, 0.700000, 0.950110], [0.653450, 0.659330, 0.700000, 0.600000, 0.856110], [0.648440, 0.600000, 0.641120, 0.500000, 0.695780], [0.570000, 0.550000, 0.598800, 0.400000, 0.560150], [0.475230, 0.500000, 0.518640, 0.339970, 0.520230], [0.743440, 0.592190, 0.603060, 0.316930, 0.794390]] return coeffs[1:, 1:, :, :]