import requests
import pandas as pd
import numpy as np
VARIABLE_MAP = {
# time series names
'pcpn': 'precipitation',
'maxt': 'temp_air_max',
'avgt': 'temp_air_average',
'obst': 'temp_air_observation',
'mint': 'temp_air_min',
'cdd': 'cooling_degree_days',
'hdd': 'heating_degree_days',
'gdd': 'growing_degree_days',
'snow': 'snowfall',
'snwd': 'snowdepth',
# metadata names
'lat': 'latitude',
'lon': 'longitude',
'elev': 'altitude',
}
def _get_acis(start, end, params, map_variables, url, **kwargs):
"""
generic helper for the public get_acis_X functions
"""
params = {
# use pd.to_datetime so that strings (e.g. '2021-01-01') are accepted
'sdate': pd.to_datetime(start).strftime('%Y-%m-%d'),
'edate': pd.to_datetime(end).strftime('%Y-%m-%d'),
'output': 'json',
**params, # endpoint-specific parameters
}
response = requests.post(url,
json=params,
headers={"Content-Type": "application/json"},
**kwargs)
response.raise_for_status()
payload = response.json()
# somewhat inconveniently, the ACIS API tends to return errors as "valid"
# responses instead of using proper HTTP error codes:
if "error" in payload:
raise requests.HTTPError(payload['error'], response=response)
columns = ['date'] + [e['name'] for e in params['elems']]
df = pd.DataFrame(payload['data'], columns=columns)
df = df.set_index('date')
df.index = pd.to_datetime(df.index)
df.index.name = None
metadata = payload['meta']
try:
# for StnData endpoint, unpack combination "ll" into lat, lon
metadata['lon'], metadata['lat'] = metadata.pop('ll')
except KeyError:
pass
try:
metadata['elev'] = metadata['elev'] * 0.3048 # feet to meters
except KeyError:
# some queries don't return elevation
pass
if map_variables:
df = df.rename(columns=VARIABLE_MAP)
for key in list(metadata.keys()):
if key in VARIABLE_MAP:
metadata[VARIABLE_MAP[key]] = metadata.pop(key)
return df, metadata
[docs]
def get_acis_prism(latitude, longitude, start, end, map_variables=True,
url="https://data.rcc-acis.org/GridData", **kwargs):
"""
Retrieve estimated daily precipitation and temperature data from PRISM
via the Applied Climate Information System (ACIS).
ACIS [2]_, [3]_ aggregates and provides access to climate data
from many underlying sources. This function retrieves daily data from
the Parameter-elevation Regressions on Independent Slopes Model
(PRISM) [1]_, a gridded precipitation and temperature model
from Oregon State University.
Geographical coverage: US, Central America, and part of South America.
Approximately 0° to 50° in latitude and -130° to -65° in longitude.
Parameters
----------
latitude : float
in decimal degrees, between -90 and 90, north is positive
longitude : float
in decimal degrees, between -180 and 180, east is positive
start : datetime-like
First day of the requested period
end : datetime-like
Last day of the requested period
map_variables : bool, default True
When True, rename data columns and metadata keys to pvlib variable
names where applicable. See variable :const:`VARIABLE_MAP`.
url : str, default: 'https://data.rcc-acis.org/GridData'
API endpoint URL
kwargs:
Optional parameters passed to ``requests.post``.
Returns
-------
data : pandas.DataFrame
Daily precipitation [mm], temperature [Celsius], and degree day
[Celsius-days] data
metadata : dict
Metadata of the selected grid cell
Raises
------
requests.HTTPError
A message from the ACIS server if the request is rejected
Notes
-----
PRISM data is aggregated from 12:00 to 12:00 UTC, meaning data labeled
May 26 reflects to the 24 hours ending at 7:00am Eastern Standard Time
on May 26.
References
----------
.. [1] `PRISM <https://prism.oregonstate.edu/>`_
.. [2] `ACIS Gridded Data <http://www.rcc-acis.org/docs_gridded.html>`_
.. [3] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
Examples
--------
>>> from pvlib.iotools import get_acis_prism
>>> df, meta = get_acis_prism(40, 80, '2020-01-01', '2020-12-31')
"""
elems = [
{"name": "pcpn", "interval": "dly", "units": "mm"},
{"name": "maxt", "interval": "dly", "units": "degreeC"},
{"name": "mint", "interval": "dly", "units": "degreeC"},
{"name": "avgt", "interval": "dly", "units": "degreeC"},
{"name": "cdd", "interval": "dly", "units": "degreeC"},
{"name": "hdd", "interval": "dly", "units": "degreeC"},
{"name": "gdd", "interval": "dly", "units": "degreeC"},
]
params = {
'loc': f"{longitude},{latitude}",
'grid': "21",
'elems': elems,
'meta': ["ll", "elev"],
}
df, meta = _get_acis(start, end, params, map_variables, url, **kwargs)
df = df.replace(-999, np.nan)
return df, meta
[docs]
def get_acis_nrcc(latitude, longitude, start, end, grid, map_variables=True,
url="https://data.rcc-acis.org/GridData", **kwargs):
"""
Retrieve estimated daily precipitation and temperature data from the
Northeast Regional Climate Center via the Applied Climate
Information System (ACIS).
ACIS [2]_, [3]_ aggregates and provides access to climate data
from many underlying sources. This function retrieves daily data from
Cornell's Northeast Regional Climate Center (NRCC) [1]_.
Geographical coverage: US, Central America, and part of South America.
Approximately 0° to 50° in latitude and -130° to -65° in longitude.
Parameters
----------
latitude : float
in decimal degrees, between -90 and 90, north is positive
longitude : float
in decimal degrees, between -180 and 180, east is positive
start : datetime-like
First day of the requested period
end : datetime-like
Last day of the requested period
grid : int
Options are either 1 (for "NRCC Interpolated") or 3
(for "NRCC Hi-Resolution"). See [2]_ for details.
map_variables : bool, default True
When True, rename data columns and metadata keys to pvlib variable
names where applicable. See variable :const:`VARIABLE_MAP`.
url : str, default: 'https://data.rcc-acis.org/GridData'
API endpoint URL
kwargs:
Optional parameters passed to ``requests.post``.
Returns
-------
data : pandas.DataFrame
Daily precipitation [mm], temperature [Celsius], and degree day
[Celsius-days] data
metadata : dict
Metadata of the selected grid cell
Raises
------
requests.HTTPError
A message from the ACIS server if the request is rejected
Notes
-----
The returned values are 24-hour aggregates, but
the aggregation period may not be midnight to midnight in local time.
Check the ACIS and NRCC documentation for details.
References
----------
.. [1] `NRCC <http://www.nrcc.cornell.edu/>`_
.. [2] `ACIS Gridded Data <http://www.rcc-acis.org/docs_gridded.html>`_
.. [3] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
Examples
--------
>>> from pvlib.iotools import get_acis_nrcc
>>> df, meta = get_acis_nrcc(40, -80, '2020-01-01', '2020-12-31', grid=1)
"""
elems = [
{"name": "pcpn", "interval": "dly", "units": "mm"},
{"name": "maxt", "interval": "dly", "units": "degreeC"},
{"name": "mint", "interval": "dly", "units": "degreeC"},
{"name": "avgt", "interval": "dly", "units": "degreeC"},
{"name": "cdd", "interval": "dly", "units": "degreeC"},
{"name": "hdd", "interval": "dly", "units": "degreeC"},
{"name": "gdd", "interval": "dly", "units": "degreeC"},
]
params = {
'loc': f"{longitude},{latitude}",
'grid': grid,
'elems': elems,
'meta': ["ll", "elev"],
}
df, meta = _get_acis(start, end, params, map_variables, url, **kwargs)
df = df.replace(-999, np.nan)
return df, meta
[docs]
def get_acis_mpe(latitude, longitude, start, end, map_variables=True,
url="https://data.rcc-acis.org/GridData", **kwargs):
"""
Retrieve estimated daily Multi-sensor Precipitation Estimates
via the Applied Climate Information System (ACIS).
ACIS [2]_, [3]_ aggregates and provides access to climate data
from many underlying sources. This function retrieves daily data from
the National Weather Service's Multi-sensor Precipitation Estimates
(MPE) [1]_, a gridded precipitation model.
This dataset covers the contiguous United States, Mexico, and parts of
Central America.
Parameters
----------
latitude : float
in decimal degrees, between -90 and 90, north is positive
longitude : float
in decimal degrees, between -180 and 180, east is positive
start : datetime-like
First day of the requested period
end : datetime-like
Last day of the requested period
map_variables : bool, default True
When True, rename data columns and metadata keys to pvlib variable
names where applicable. See variable :const:`VARIABLE_MAP`.
url : str, default: 'https://data.rcc-acis.org/GridData'
API endpoint URL
kwargs:
Optional parameters passed to ``requests.post``.
Returns
-------
data : pandas.DataFrame
Daily precipitation [mm] data
metadata : dict
Coordinates of the selected grid cell
Raises
------
requests.HTTPError
A message from the ACIS server if the request is rejected
Notes
-----
The returned values are 24-hour aggregates, but
the aggregation period may not be midnight to midnight in local time.
Check the ACIS and MPE documentation for details.
References
----------
.. [1] `Multisensor Precipitation Estimates
<https://www.weather.gov/marfc/Multisensor_Precipitation>`_
.. [2] `ACIS Gridded Data <http://www.rcc-acis.org/docs_gridded.html>`_
.. [3] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
Examples
--------
>>> from pvlib.iotools import get_acis_mpe
>>> df, meta = get_acis_mpe(40, -80, '2020-01-01', '2020-12-31')
"""
elems = [
# only precipitation is supported in this dataset
{"name": "pcpn", "interval": "dly", "units": "mm"},
]
params = {
'loc': f"{longitude},{latitude}",
'grid': "2",
'elems': elems,
'meta': ["ll"], # "elev" is not supported for this dataset
}
df, meta = _get_acis(start, end, params, map_variables, url, **kwargs)
df = df.replace(-999, np.nan)
return df, meta
[docs]
def get_acis_station_data(station, start, end, trace_val=0.001,
map_variables=True,
url="https://data.rcc-acis.org/StnData", **kwargs):
"""
Retrieve weather station climate records via the Applied Climate
Information System (ACIS).
ACIS [1]_, [2]_ aggregates and provides access to climate data
from many underlying sources. This function retrieves measurements
from ground stations belonging to various global networks.
This function can query data from stations all over the world.
The stations available in a given area can be listed using
:py:func:`get_acis_available_stations`.
Parameters
----------
station : str
Identifier code for the station to query. Identifiers from many
station networks are accepted, including WBAN, COOP, FAA, WMO, GHCN,
and others. See [1]_ and [2]_ for details.
start : datetime-like
First day of the requested period
end : datetime-like
Last day of the requested period
map_variables : bool, default True
When True, rename data columns and metadata keys to pvlib variable
names where applicable. See variable :const:`VARIABLE_MAP`.
trace_val : float, default 0.001
Value to replace "trace" values in the precipitation data
url : str, default: 'https://data.rcc-acis.org/GridData'
API endpoint URL
kwargs:
Optional parameters passed to ``requests.post``.
Returns
-------
data : pandas.DataFrame
Daily precipitation [mm], temperature [Celsius], snow [mm], and
degree day [Celsius-days] data
metadata : dict
station metadata
Raises
------
requests.HTTPError
A message from the ACIS server if the request is rejected
See Also
--------
get_acis_available_stations
References
----------
.. [1] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
.. [2] `ACIS Metadata <http://www.rcc-acis.org/docs_metadata.html>`_
Examples
--------
>>> # Using an FAA code (Chicago O'Hare airport)
>>> from pvlib.iotools import get_acis_station_data
>>> df, meta = get_acis_station_data('ORD', '2020-01-01', '2020-12-31')
>>>
>>> # Look up available stations in a lat/lon rectangle, with data
>>> # available in the specified date range:
>>> from pvlib.iotools import get_acis_available_stations
>>> stations = get_acis_available_stations([39.5, 40.5], [-80.5, -79.5],
... '2020-01-01', '2020-01-03')
>>> stations['sids'][0]
['369367 2', 'USC00369367 6', 'WYNP1 7']
>>> df, meta = get_acis_station_data('369367', '2020-01-01', '2020-01-03')
"""
elems = [
{"name": "maxt", "interval": "dly", "units": "degreeC"},
{"name": "mint", "interval": "dly", "units": "degreeC"},
{"name": "avgt", "interval": "dly", "units": "degreeC"},
{"name": "obst", "interval": "dly", "units": "degreeC"},
{"name": "pcpn", "interval": "dly", "units": "mm"},
{"name": "snow", "interval": "dly", "units": "cm"},
{"name": "snwd", "interval": "dly", "units": "cm"},
{"name": "cdd", "interval": "dly", "units": "degreeC"},
{"name": "hdd", "interval": "dly", "units": "degreeC"},
{"name": "gdd", "interval": "dly", "units": "degreeC"},
]
params = {
'sid': str(station),
'elems': elems,
'meta': ('name,state,sids,sid_dates,ll,elev,uid,county,'
'climdiv,valid_daterange,tzo,network')
}
df, metadata = _get_acis(start, end, params, map_variables, url, **kwargs)
df = df.replace("M", np.nan)
df = df.replace("T", trace_val)
df = df.astype(float)
return df, metadata
[docs]
def get_acis_available_stations(latitude_range, longitude_range,
start=None, end=None,
url="https://data.rcc-acis.org/StnMeta",
**kwargs):
"""
List weather stations in a given area available from the
Applied Climate Information System (ACIS).
The ``sids`` returned by this function can be used with
:py:func:`get_acis_station_data` to retrieve weather measurements
from the station.
Parameters
----------
latitude_range : list
A 2-element list of [southern bound, northern bound]
in decimal degrees, between -90 and 90, north is positive
longitude_range : list
A 2-element list of [western bound, eastern bound]
in decimal degrees, between -180 and 180, east is positive
start : datetime-like, optional
If specified, return only stations that have data between ``start`` and
``end``. If not specified, all stations in the region are returned.
end : datetime-like, optional
See ``start``
url : str, default: 'https://data.rcc-acis.org/StnMeta'
API endpoint URL
kwargs:
Optional parameters passed to ``requests.post``.
Returns
-------
stations : pandas.DataFrame
A dataframe of station metadata, one row per station.
The ``sids`` column contains IDs that can be used with
:py:func:`get_acis_station_data`.
Raises
------
requests.HTTPError
A message from the ACIS server if the request is rejected
See Also
--------
get_acis_station_data
References
----------
.. [1] `ACIS Web Services <http://www.rcc-acis.org/docs_webservices.html>`_
.. [2] `ACIS Metadata <http://www.rcc-acis.org/docs_metadata.html>`_
Examples
--------
>>> # Look up available stations in a lat/lon rectangle, with data
>>> # available in the specified date range:
>>> from pvlib.iotools import get_acis_available_stations
>>> stations = get_acis_available_stations([39.5, 40.5], [-80.5, -79.5],
... '2020-01-01', '2020-01-03')
>>> stations['sids'][0]
['369367 2', 'USC00369367 6', 'WYNP1 7']
"""
bbox = "{},{},{},{}".format(
longitude_range[0],
latitude_range[0],
longitude_range[1],
latitude_range[1],
)
params = {
"bbox": bbox,
"meta": ("name,state,sids,sid_dates,ll,elev,"
"uid,county,climdiv,tzo,network"),
}
if start is not None and end is not None:
params['elems'] = ['maxt', 'mint', 'avgt', 'obst',
'pcpn', 'snow', 'snwd']
params['sdate'] = pd.to_datetime(start).strftime('%Y-%m-%d')
params['edate'] = pd.to_datetime(end).strftime('%Y-%m-%d')
response = requests.post(url,
json=params,
headers={"Content-Type": "application/json"},
**kwargs)
response.raise_for_status()
payload = response.json()
if "error" in payload:
raise requests.HTTPError(payload['error'], response=response)
metadata = payload['meta']
for station_record in metadata:
station_record['altitude'] = station_record.pop('elev')
station_record['longitude'], station_record['latitude'] = \
station_record.pop('ll')
df = pd.DataFrame(metadata)
return df