Source code for pvlib.ivtools.utils

"""
The ``pvlib.ivtools.utils.py`` module contains utility functions related to
working with IV curves, or fitting equations to IV curve data.

"""

import numpy as np
import pandas as pd
from numpy.polynomial.polynomial import Polynomial as Poly


# A small number used to decide when a slope is equivalent to zero
EPS_slope = np.finfo('float').eps**(1/3)
# A small number used to decide when a slope is equivalent to zero
EPS_val = np.finfo('float').eps


def _numdiff(x, f):
    """
    Compute first and second order derivative using possibly unequally
    spaced data.

    Parameters
    ----------
    x : numeric
        a numpy array of values of x
    f : numeric
        a numpy array of values of the function f for which derivatives are to
        be computed. Must be the same length as x.

    Returns
    -------
    df : numeric
        a numpy array of len(x) containing the first derivative of f at each
        point x except at the first 2 and last 2 points
    df2 : numeric
        a numpy array of len(x) containing the second derivative of f at each
        point x except at the first 2 and last 2 points.

    Notes
    -----
    ``numdiff`` computes first and second order derivatives using a 5th order
    formula that accounts for possibly unequally spaced data [1]_. Because a
    5th order centered difference formula is used, ``numdiff`` returns NaNs
    for the first 2 and last 2 points in the input vector for x. Ported from
    PVLib Matlab [2]_.

    References
    ----------
    .. [1] M. K. Bowen, R. Smith, "Derivative formulae and errors for
       non-uniformly spaced points", Proceedings of the Royal Society A, vol.
       461 pp 1975 - 1997, July 2005. :doi:`10.1098/rpsa.2004.1430`
    .. [2] PVLib MATLAB https://github.com/sandialabs/MATLAB_PV_LIB
    """

    n = len(f)

    df = np.zeros(n)
    df2 = np.zeros(n)

    # first two points are special
    df[:2] = float("Nan")
    df2[:2] = float("Nan")

    # Last two points are special
    df[-2:] = float("Nan")
    df2[-2:] = float("Nan")

    # Rest of points. Take reference point to be the middle of each group of 5
    # points. Calculate displacements
    ff = np.vstack((f[:-4], f[1:-3], f[2:-2], f[3:-1], f[4:])).T

    a0 = (np.vstack((x[:-4], x[1:-3], x[2:-2], x[3:-1], x[4:])).T
          - np.tile(x[2:-2], [5, 1]).T)

    u1 = np.zeros(a0.shape)
    left = np.zeros(a0.shape)
    u2 = np.zeros(a0.shape)

    u1[:, 0] = (
        a0[:, 1] * a0[:, 2] * a0[:, 3] + a0[:, 1] * a0[:, 2] * a0[:, 4]
        + a0[:, 1] * a0[:, 3] * a0[:, 4] + a0[:, 2] * a0[:, 3] * a0[:, 4])
    u1[:, 1] = (
        a0[:, 0] * a0[:, 2] * a0[:, 3] + a0[:, 0] * a0[:, 2] * a0[:, 4]
        + a0[:, 0] * a0[:, 3] * a0[:, 4] + a0[:, 2] * a0[:, 3] * a0[:, 4])
    u1[:, 2] = (
        a0[:, 0] * a0[:, 1] * a0[:, 3] + a0[:, 0] * a0[:, 1] * a0[:, 4]
        + a0[:, 0] * a0[:, 3] * a0[:, 4] + a0[:, 1] * a0[:, 3] * a0[:, 4])
    u1[:, 3] = (
        a0[:, 0] * a0[:, 1] * a0[:, 2] + a0[:, 0] * a0[:, 1] * a0[:, 4]
        + a0[:, 0] * a0[:, 2] * a0[:, 4] + a0[:, 1] * a0[:, 2] * a0[:, 4])
    u1[:, 4] = (
        a0[:, 0] * a0[:, 1] * a0[:, 2] + a0[:, 0] * a0[:, 1] * a0[:, 3]
        + a0[:, 0] * a0[:, 2] * a0[:, 3] + a0[:, 1] * a0[:, 2] * a0[:, 3])

    left[:, 0] = (a0[:, 0] - a0[:, 1]) * (a0[:, 0] - a0[:, 2]) * \
        (a0[:, 0] - a0[:, 3]) * (a0[:, 0] - a0[:, 4])
    left[:, 1] = (a0[:, 1] - a0[:, 0]) * (a0[:, 1] - a0[:, 2]) * \
        (a0[:, 1] - a0[:, 3]) * (a0[:, 1] - a0[:, 4])
    left[:, 2] = (a0[:, 2] - a0[:, 0]) * (a0[:, 2] - a0[:, 1]) * \
        (a0[:, 2] - a0[:, 3]) * (a0[:, 2] - a0[:, 4])
    left[:, 3] = (a0[:, 3] - a0[:, 0]) * (a0[:, 3] - a0[:, 1]) * \
        (a0[:, 3] - a0[:, 2]) * (a0[:, 3] - a0[:, 4])
    left[:, 4] = (a0[:, 4] - a0[:, 0]) * (a0[:, 4] - a0[:, 1]) * \
        (a0[:, 4] - a0[:, 2]) * (a0[:, 4] - a0[:, 3])

    df[2:-2] = np.sum(-(u1 / left) * ff, axis=1)

    # second derivative
    u2[:, 0] = (
        a0[:, 1] * a0[:, 2] + a0[:, 1] * a0[:, 3] + a0[:, 1] * a0[:, 4]
        + a0[:, 2] * a0[:, 3] + a0[:, 2] * a0[:, 4] + a0[:, 3] * a0[:, 4])
    u2[:, 1] = (
        a0[:, 0] * a0[:, 2] + a0[:, 0] * a0[:, 3] + a0[:, 0] * a0[:, 4]
        + a0[:, 2] * a0[:, 3] + a0[:, 2] * a0[:, 4] + a0[:, 3] * a0[:, 4])
    u2[:, 2] = (
        a0[:, 0] * a0[:, 1] + a0[:, 0] * a0[:, 3] + a0[:, 0] * a0[:, 4]
        + a0[:, 1] * a0[:, 3] + a0[:, 1] * a0[:, 3] + a0[:, 3] * a0[:, 4])
    u2[:, 3] = (
        a0[:, 0] * a0[:, 1] + a0[:, 0] * a0[:, 2] + a0[:, 0] * a0[:, 4]
        + a0[:, 1] * a0[:, 2] + a0[:, 1] * a0[:, 4] + a0[:, 2] * a0[:, 4])
    u2[:, 4] = (
        a0[:, 0] * a0[:, 1] + a0[:, 0] * a0[:, 2] + a0[:, 0] * a0[:, 3]
        + a0[:, 1] * a0[:, 2] + a0[:, 1] * a0[:, 4] + a0[:, 2] * a0[:, 3])

    df2[2:-2] = 2. * np.sum(u2 * ff, axis=1)
    return df, df2


[docs] def rectify_iv_curve(voltage, current, decimals=None): """ Sort the IV curve data, remove NaNs and negative values, and combine points with duplicate voltage. Parameters ---------- voltage : numeric [V] current : numeric [A] decimals : int, optional number of decimal places to which voltage is rounded to remove duplicated points. If not specified, no rounding is done. Returns ------- voltage : numeric [V] current : numeric [A] Notes ----- ``rectify_iv_curve`` ensures that the IV curve lies in the first quadrant of the (voltage, current) plane. The returned IV curve: * increases in voltage * contains no negative current or voltage values * contains no NaNs * contains no points with duplicate voltage values. Where voltage values are repeated, a single data point is substituted with current equal to the average of current at duplicated voltages. """ df = pd.DataFrame(data=np.vstack((voltage, current)).T, columns=['v', 'i']) # restrict to first quadrant df.dropna(inplace=True) df = df[(df['v'] >= 0) & (df['i'] >= 0)] # sort pairs on voltage, then current df = df.sort_values(by=['v', 'i'], ascending=[True, False]) # eliminate duplicate voltage points if decimals is not None: df['v'] = np.round(df['v'], decimals=decimals) _, inv = np.unique(df['v'], return_inverse=True) df.index = inv # average current at each common voltage df = df.groupby(by=inv).mean() tmp = np.array(df).T return tmp[0, ], tmp[1, ]
def _schumaker_qspline(x, y): """ Fit a quadratic spline which preserves monotonicity and convexity in the data. Parameters ---------- x : numeric independent points between which the spline will interpolate. y : numeric dependent points between which the spline will interpolate. Returns ------- t : array an ordered vector of knots, i.e., X values where the spline changes coefficients. All values in x are used as knots. The algorithm may insert additional knots between data points in x where changes in convexity are indicated by the (numerical) derivative. Consequently len(t) >= len(x). c : array a Nx3 matrix of coefficients where the kth row defines the quadratic interpolant between t_k and t_(k+1), i.e., y = c[i, 0] * (x - t_k)^2 + c[i, 1] * (x - t_k) + c[i, 2] yhat : array y values corresponding to the knots in t. Contains the original data points, y, and also y values estimated from the spline at the inserted knots. kflag : array a vector of len(t) of logicals, which are set to true for elements of t that are knots inserted by the algorithm. Notes ----- Algorithm is taken from [1]_, which relies on prior work described in [2]_. Ported from PVLib Matlab [3]_. References ---------- .. [1] L. L. Schumaker, "On Shape Preserving Quadratic Spline Interpolation", SIAM Journal on Numerical Analysis 20(4), August 1983, pp 854 - 864 .. [2] M. H. Lam, "Monotone and Convex Quadratic Spline Interpolation", Virginia Journal of Science 41(1), Spring 1990 .. [3] PVLib MATLAB https://github.com/sandialabs/MATLAB_PV_LIB """ # Make sure vectors are 1D arrays x = x.flatten() y = y.flatten() n = x.size # compute various values used by the algorithm: differences, length of line # segments between data points, and ratios of differences. delx = np.diff(x) # delx[i] = x[i + 1] - x[i] dely = np.diff(y) delta = dely / delx # Calculate first derivative at each x value per [3] s = np.zeros_like(x) left = np.append(0.0, delta) right = np.append(delta, 0.0) pdelta = left * right u = pdelta > 0 # [3], Eq. 9 for interior points # fix tuning parameters in [2], Eq 9 at chi = .5 and eta = .5 s[u] = pdelta[u] / (0.5*left[u] + 0.5*right[u]) # [3], Eq. 7 for left endpoint left_end = 2.0 * delta[0] - s[1] if delta[0] * left_end > 0: s[0] = left_end # [3], Eq. 8 for right endpoint right_end = 2.0 * delta[-1] - s[-2] if delta[-1] * right_end > 0: s[-1] = right_end # determine knots. Start with initial points x # [2], Algorithm 4.1 first 'if' condition of step 5 defines intervals # which won't get internal knots tests = s[:-1] + s[1:] u = np.isclose(tests, 2.0 * delta, atol=EPS_slope) # u = true for an interval which will not get an internal knot k = n + sum(~u) # total number of knots = original data + inserted knots # set up output arrays # knot locations, first n - 1 and very last (n + k) are original data xk = np.zeros(k) yk = np.zeros(k) # function values at knot locations # logicals that will indicate where additional knots are inserted flag = np.zeros(k, dtype=bool) a = np.zeros((k, 3)) # structures needed to compute coefficients, have to be maintained in # association with each knot tmpx = x[:-1] tmpy = y[:-1] tmpx2 = x[1:] tmps = s[:-1] tmps2 = s[1:] diffs = np.diff(s) # structure to contain information associated with each knot, used to # calculate coefficients uu = np.zeros((k, 6)) uu[:(n - 1), :] = np.array([tmpx, tmpx2, tmpy, tmps, tmps2, delta]).T # [2], Algorithm 4.1 subpart 1 of Step 5 # original x values that are left points of intervals without internal # knots # MATLAB differs from NumPy, boolean indices must be same size as # array xk[:(n - 1)][u] = tmpx[u] yk[:(n - 1)][u] = tmpy[u] # constant term for each polynomial for intervals without knots a[:(n - 1), 2][u] = tmpy[u] a[:(n - 1), 1][u] = s[:-1][u] a[:(n - 1), 0][u] = 0.5 * diffs[u] / delx[u] # leading coefficients # [2], Algorithm 4.1 subpart 2 of Step 5 # original x values that are left points of intervals with internal knots xk[:(n-1)][~u] = tmpx[~u] yk[:(n-1)][~u] = tmpy[~u] aa = s[:-1] - delta b = s[1:] - delta # Since the above two lines can lead to numerical errors, aa and b # are rounded to 0.0 is their absolute value is small enough. aa[np.isclose(aa, 0., atol=EPS_val)] = 0. b[np.isclose(b, 0., atol=EPS_val)] = 0. sbar = np.zeros(k) eta = np.zeros(k) # will contain mapping from the left points of intervals containing an # added knot to each inverval's internal knot value xi = np.zeros(k) t0 = aa * b >= 0 # first 'else' in Algorithm 4.1 Step 5 v = np.logical_and(~u, t0) # len(u) == (n - 1) always q = np.sum(v) # number of this type of knot to add if q > 0.: xk[(n - 1):(n + q - 1)] = .5 * (tmpx[v] + tmpx2[v]) # knot location uu[(n - 1):(n + q - 1), :] = np.array([tmpx[v], tmpx2[v], tmpy[v], tmps[v], tmps2[v], delta[v]]).T xi[:(n-1)][v] = xk[(n - 1):(n + q - 1)] t1 = np.abs(aa) > np.abs(b) w = np.logical_and(~u, ~v) # second 'else' in Algorithm 4.1 Step 5 w = np.logical_and(w, t1) r = np.sum(w) if r > 0.: xk[(n + q - 1):(n + q + r - 1)] = tmpx2[w] + aa[w] * delx[w] / diffs[w] uu[(n + q - 1):(n + q + r - 1), :] = np.array([tmpx[w], tmpx2[w], tmpy[w], tmps[w], tmps2[w], delta[w]]).T xi[:(n - 1)][w] = xk[(n + q - 1):(n + q + r - 1)] z = np.logical_and(~u, ~v) # last 'else' in Algorithm 4.1 Step 5 z = np.logical_and(z, ~w) ss = np.sum(z) if ss > 0.: xk[(n + q + r - 1):(n + q + r + ss - 1)] = \ tmpx[z] + b[z] * delx[z] / diffs[z] uu[(n + q + r - 1):(n + q + r + ss - 1), :] = \ np.array([tmpx[z], tmpx2[z], tmpy[z], tmps[z], tmps2[z], delta[z]]).T xi[:(n-1)][z] = xk[(n + q + r - 1):(n + q + r + ss - 1)] # define polynomial coefficients for intervals with added knots ff = ~u sbar[:(n-1)][ff] = ( (2 * uu[:(n - 1), 5][ff] - uu[:(n-1), 4][ff]) + (uu[:(n - 1), 4][ff] - uu[:(n-1), 3][ff]) * (xi[:(n - 1)][ff] - uu[:(n-1), 0][ff]) / (uu[:(n - 1), 1][ff] - uu[:(n-1), 0][ff])) eta[:(n-1)][ff] = ( (sbar[:(n - 1)][ff] - uu[:(n-1), 3][ff]) / (xi[:(n - 1)][ff] - uu[:(n-1), 0][ff])) sbar[(n - 1):(n + q + r + ss - 1)] = \ (2 * uu[(n - 1):(n + q + r + ss - 1), 5] - uu[(n - 1):(n + q + r + ss - 1), 4]) + \ (uu[(n - 1):(n + q + r + ss - 1), 4] - uu[(n - 1):(n + q + r + ss - 1), 3]) * \ (xk[(n - 1):(n + q + r + ss - 1)] - uu[(n - 1):(n + q + r + ss - 1), 0]) / \ (uu[(n - 1):(n + q + r + ss - 1), 1] - uu[(n - 1):(n + q + r + ss - 1), 0]) eta[(n - 1):(n + q + r + ss - 1)] = \ (sbar[(n - 1):(n + q + r + ss - 1)] - uu[(n - 1):(n + q + r + ss - 1), 3]) / \ (xk[(n - 1):(n + q + r + ss - 1)] - uu[(n - 1):(n + q + r + ss - 1), 0]) # constant term for polynomial for intervals with internal knots a[:(n - 1), 2][~u] = uu[:(n - 1), 2][~u] a[:(n - 1), 1][~u] = uu[:(n - 1), 3][~u] a[:(n - 1), 0][~u] = 0.5 * eta[:(n - 1)][~u] # leading coefficient a[(n - 1):(n + q + r + ss - 1), 2] = \ uu[(n - 1):(n + q + r + ss - 1), 2] + \ uu[(n - 1):(n + q + r + ss - 1), 3] * \ (xk[(n - 1):(n + q + r + ss - 1)] - uu[(n - 1):(n + q + r + ss - 1), 0]) + \ .5 * eta[(n - 1):(n + q + r + ss - 1)] * \ (xk[(n - 1):(n + q + r + ss - 1)] - uu[(n - 1):(n + q + r + ss - 1), 0]) ** 2. a[(n - 1):(n + q + r + ss - 1), 1] = sbar[(n - 1):(n + q + r + ss - 1)] a[(n - 1):(n + q + r + ss - 1), 0] = \ .5 * (uu[(n - 1):(n + q + r + ss - 1), 4] - sbar[(n - 1):(n + q + r + ss - 1)]) / \ (uu[(n - 1):(n + q + r + ss - 1), 1] - uu[(n - 1):(n + q + r + ss - 1), 0]) yk[(n - 1):(n + q + r + ss - 1)] = a[(n - 1):(n + q + r + ss - 1), 2] xk[n + q + r + ss - 1] = x[n - 1] yk[n + q + r + ss - 1] = y[n - 1] flag[(n - 1):(n + q + r + ss - 1)] = True # these are all inserted knots tmp = np.vstack((xk, a.T, yk, flag)).T # sort output in terms of increasing x (original plus added knots) tmp2 = tmp[tmp[:, 0].argsort(kind='mergesort')] t = tmp2[:, 0] outn = len(t) c = tmp2[0:(outn - 1), 1:4] yhat = tmp2[:, 4] kflag = tmp2[:, 5] return t, c, yhat, kflag
[docs] def astm_e1036(v, i, imax_limits=(0.75, 1.15), vmax_limits=(0.75, 1.15), voc_points=3, isc_points=3, mp_fit_order=4): ''' Extract photovoltaic IV parameters according to ASTM E1036. Assumes that the power producing portion of the curve is in the first quadrant. Parameters ---------- v : array-like Voltage points i : array-like Current points imax_limits : tuple, default (0.75, 1.15) Two-element tuple (low, high) specifying the fraction of estimated Imp within which to fit a polynomial for max power calculation vmax_limits : tuple, default (0.75, 1.15) Two-element tuple (low, high) specifying the fraction of estimated Vmp within which to fit a polynomial for max power calculation voc_points : int, default 3 The number of points near open circuit to use for linear fit and Voc calculation isc_points : int, default 3 The number of points near short circuit to use for linear fit and Isc calculation mp_fit_order : int, default 4 The order of the polynomial fit of power vs. voltage near maximum power Returns ------- dict Results. The IV parameters are given by the keys 'voc', 'isc', 'vmp', 'imp', 'pmp', and 'ff'. The key 'mp_fit' gives the numpy Polynomial object for the fit of power vs voltage near maximum power. References ---------- .. [1] Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells, ASTM E1036-15(2019), :doi:`10.1520/E1036-15R19` ''' # Adapted from https://github.com/NREL/iv_params # Copyright (c) 2022, Alliance for Sustainable Energy, LLC # All rights reserved. df = pd.DataFrame() df['v'] = v df['i'] = i df['p'] = df['v'] * df['i'] # determine if we can use voc and isc estimates i_min_ind = df['i'].abs().idxmin() v_min_ind = df['v'].abs().idxmin() voc_est = df['v'][i_min_ind] isc_est = df['i'][v_min_ind] # accept the estimates if they are close enough # if not, perform a linear fit if abs(df['i'][i_min_ind]) <= isc_est * 0.001: voc = voc_est else: df['i_abs'] = df['i'].abs() voc_df = df.nsmallest(voc_points, 'i_abs') voc_fit = Poly.fit(voc_df['i'], voc_df['v'], 1) voc = voc_fit(0) if abs(df['v'][v_min_ind]) <= voc_est * 0.005: isc = isc_est else: df['v_abs'] = df['v'].abs() isc_df = df.nsmallest(isc_points, 'v_abs') isc_fit = Poly.fit(isc_df['v'], isc_df['i'], 1) isc = isc_fit(0) # estimate max power point max_index = df['p'].idxmax() mp_est = df.loc[max_index] # filter around max power mask = ( (df['i'] >= imax_limits[0] * mp_est['i']) & (df['i'] <= imax_limits[1] * mp_est['i']) & (df['v'] >= vmax_limits[0] * mp_est['v']) & (df['v'] <= vmax_limits[1] * mp_est['v']) ) filtered = df[mask] # fit polynomial and find max mp_fit = Poly.fit(filtered['v'], filtered['p'], mp_fit_order) # Note that this root finding procedure differs from # the suggestion in the standard roots = mp_fit.deriv().roots() # only consider real roots roots = roots.real[abs(roots.imag) < 1e-5] # only consider roots in the relevant part of the domain roots = roots[(roots < filtered['v'].max()) & (roots > filtered['v'].min())] vmp = roots[np.argmax(mp_fit(roots))] pmp = mp_fit(vmp) # Imp isn't mentioned for update in the # standard, but this seems to be in the intended spirit imp = pmp / vmp ff = pmp / (voc * isc) result = {} result['voc'] = voc result['isc'] = isc result['vmp'] = vmp result['imp'] = imp result['pmp'] = pmp result['ff'] = ff result['mp_fit'] = mp_fit return result