pvlib.tracking.SingleAxisTracker

class pvlib.tracking.SingleAxisTracker(axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=0.2857142857142857, **kwargs)[source]

Inherits the PV modeling methods from PVSystem.

Parameters
  • axis_tilt (float, default 0) – The tilt of the axis of rotation (i.e, the y-axis defined by axis_azimuth) with respect to horizontal, in decimal degrees.

  • axis_azimuth (float, default 0) – A value denoting the compass direction along which the axis of rotation lies. Measured in decimal degrees East of North.

  • max_angle (float, default 90) – A value denoting the maximum rotation angle, in decimal degrees, of the one-axis tracker from its horizontal position (horizontal if axis_tilt = 0). A max_angle of 90 degrees allows the tracker to rotate to a vertical position to point the panel towards a horizon. max_angle of 180 degrees allows for full rotation.

  • backtrack (bool, default True) – Controls whether the tracker has the capability to “backtrack” to avoid row-to-row shading. False denotes no backtrack capability. True denotes backtrack capability.

  • gcr (float, default 2.0/7.0) – A value denoting the ground coverage ratio of a tracker system which utilizes backtracking; i.e. the ratio between the PV array surface area to total ground area. A tracker system with modules 2 meters wide, centered on the tracking axis, with 6 meters between the tracking axes has a gcr of 2/6=0.333. If gcr is not provided, a gcr of 2/7 is default. gcr must be <=1.

__init__(axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=0.2857142857142857, **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([axis_tilt, axis_azimuth, …])

Initialize self.

adrinverter(v_dc, p_dc)

ashraeiam(aoi)

Determine the incidence angle modifier using self.module_parameters['b'], aoi, and the ashraeiam() function.

calcparams_cec(effective_irradiance, …)

Use the calcparams_cec() function, the input parameters and self.module_parameters to calculate the module currents and resistances.

calcparams_desoto(effective_irradiance, …)

Use the calcparams_desoto() function, the input parameters and self.module_parameters to calculate the module currents and resistances.

calcparams_pvsyst(effective_irradiance, …)

Use the calcparams_pvsyst() function, the input parameters and self.module_parameters to calculate the module currents and resistances.

first_solar_spectral_loss(pw, airmass_absolute)

Use the first_solar_spectral_correction() function to calculate the spectral loss modifier.

get_aoi(surface_tilt, surface_azimuth, …)

Get the angle of incidence on the system.

get_irradiance(surface_tilt, …[, …])

Uses the irradiance.get_total_irradiance() function to calculate the plane of array irradiance components on a tilted surface defined by the input data and self.albedo.

i_from_v(resistance_shunt, …)

Wrapper around the i_from_v() function.

localize([location, latitude, longitude])

Creates a LocalizedSingleAxisTracker object using this object and location data.

physicaliam(aoi)

Determine the incidence angle modifier using aoi, self.module_parameters['K'], self.module_parameters['L'], self.module_parameters['n'], and the physicaliam() function.

pvsyst_celltemp(poa_global, temp_air[, …])

Uses pvsyst_celltemp() to calculate module temperatures based on self.racking_model and the input parameters.

pvwatts_ac(pdc)

Calculates AC power according to the PVWatts model using pvwatts_ac(), self.module_parameters[‘pdc0’], and eta_inv_nom=self.inverter_parameters[‘eta_inv_nom’].

pvwatts_dc(g_poa_effective, temp_cell)

Calcuates DC power according to the PVWatts model using pvwatts_dc(), self.module_parameters[‘pdc0’], and self.module_parameters[‘gamma_pdc’].

pvwatts_losses()

Calculates DC power losses according the PVwatts model using pvwatts_losses() and self.losses_parameters.`

sapm(effective_irradiance, temp_cell, **kwargs)

Use the sapm() function, the input parameters, and self.module_parameters to calculate Voc, Isc, Ix, Ixx, Vmp/Imp.

sapm_aoi_loss(aoi)

Use the sapm_aoi_loss() function, the input parameters, and self.module_parameters to calculate F2.

sapm_celltemp(irrad, wind, temp)

Uses sapm_celltemp() to calculate module and cell temperatures based on self.racking_model and the input parameters.

sapm_effective_irradiance(poa_direct, …[, …])

Use the sapm_effective_irradiance() function, the input parameters, and self.module_parameters to calculate effective irradiance.

sapm_spectral_loss(airmass_absolute)

Use the sapm_spectral_loss() function, the input parameters, and self.module_parameters to calculate F1.

scale_voltage_current_power(data)

Scales the voltage, current, and power of the DataFrames returned by singlediode() and sapm() by self.modules_per_string and self.strings_per_inverter.

singleaxis(apparent_zenith, apparent_azimuth)

Get tracking data.

singlediode(photocurrent, …[, ivcurve_pnts])

Wrapper around the singlediode() function.

snlinverter(v_dc, p_dc)

Uses snlinverter() to calculate AC power based on self.inverter_parameters and the input parameters.