pvlib.tracking.SingleAxisTracker

class pvlib.tracking.SingleAxisTracker(axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=0.2857142857142857, cross_axis_tilt=0.0, **kwargs)[source]

A class for single-axis trackers that inherits the PV modeling methods from PVSystem. For details on calculating tracker rotation see pvlib.tracking.singleaxis().

Parameters:
  • axis_tilt (float, default 0) – The tilt of the axis of rotation (i.e, the y-axis defined by axis_azimuth) with respect to horizontal, in decimal degrees.
  • axis_azimuth (float, default 0) – A value denoting the compass direction along which the axis of rotation lies. Measured in decimal degrees east of north.
  • max_angle (float, default 90) – A value denoting the maximum rotation angle, in decimal degrees, of the one-axis tracker from its horizontal position (horizontal if axis_tilt = 0). A max_angle of 90 degrees allows the tracker to rotate to a vertical position to point the panel towards a horizon. max_angle of 180 degrees allows for full rotation.
  • backtrack (bool, default True) – Controls whether the tracker has the capability to “backtrack” to avoid row-to-row shading. False denotes no backtrack capability. True denotes backtrack capability.
  • gcr (float, default 2.0/7.0) – A value denoting the ground coverage ratio of a tracker system which utilizes backtracking; i.e. the ratio between the PV array surface area to total ground area. A tracker system with modules 2 meters wide, centered on the tracking axis, with 6 meters between the tracking axes has a gcr of 2/6=0.333. If gcr is not provided, a gcr of 2/7 is default. gcr must be <=1.
  • cross_axis_tilt (float, default 0.0) – The angle, relative to horizontal, of the line formed by the intersection between the slope containing the tracker axes and a plane perpendicular to the tracker axes. Cross-axis tilt should be specified using a right-handed convention. For example, trackers with axis azimuth of 180 degrees (heading south) will have a negative cross-axis tilt if the tracker axes plane slopes down to the east and positive cross-axis tilt if the tracker axes plane slopes up to the east. Use calc_cross_axis_tilt() to calculate cross_axis_tilt. [degrees]
  • **kwargs – Passed to PVSystem.
__init__(axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=0.2857142857142857, cross_axis_tilt=0.0, **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([axis_tilt, axis_azimuth, …]) Initialize self.
adrinverter(v_dc, p_dc) Uses pvlib.inverter.adr() to calculate AC power based on self.inverter_parameters and the input voltage and power.
calcparams_cec(effective_irradiance, …) Use the calcparams_cec() function, the input parameters and self.module_parameters to calculate the module currents and resistances.
calcparams_desoto(effective_irradiance, …) Use the calcparams_desoto() function, the input parameters and self.module_parameters to calculate the module currents and resistances.
calcparams_pvsyst(effective_irradiance, …) Use the calcparams_pvsyst() function, the input parameters and self.module_parameters to calculate the module currents and resistances.
faiman_celltemp(poa_global, temp_air[, …]) Use temperature.faiman() to calculate cell temperature.
first_solar_spectral_loss(pw, airmass_absolute) Use the first_solar_spectral_correction() function to calculate the spectral loss modifier.
get_aoi(surface_tilt, surface_azimuth, …) Get the angle of incidence on the system.
get_iam(aoi[, iam_model]) Determine the incidence angle modifier using the method specified by iam_model.
get_irradiance(surface_tilt, …[, …]) Uses the irradiance.get_total_irradiance() function to calculate the plane of array irradiance components on a tilted surface defined by the input data and self.albedo.
i_from_v(resistance_shunt, …) Wrapper around the pvlib.pvsystem.i_from_v() function.
localize([location, latitude, longitude])

Deprecated since version 0.8.

pvsyst_celltemp(poa_global, temp_air[, …]) Uses temperature.pvsyst_cell() to calculate cell temperature.
pvwatts_ac(pdc) Calculates AC power according to the PVWatts model using pvlib.inverter.pvwatts(), self.module_parameters[“pdc0”], and eta_inv_nom=self.inverter_parameters[“eta_inv_nom”].
pvwatts_dc(g_poa_effective, temp_cell) Calcuates DC power according to the PVWatts model using pvlib.pvsystem.pvwatts_dc(), self.module_parameters[‘pdc0’], and self.module_parameters[‘gamma_pdc’].
pvwatts_losses() Calculates DC power losses according the PVwatts model using pvlib.pvsystem.pvwatts_losses() and self.losses_parameters.
sapm(effective_irradiance, temp_cell, **kwargs) Use the sapm() function, the input parameters, and self.module_parameters to calculate Voc, Isc, Ix, Ixx, Vmp, and Imp.
sapm_celltemp(poa_global, temp_air, wind_speed) Uses temperature.sapm_cell() to calculate cell temperatures.
sapm_effective_irradiance(poa_direct, …[, …]) Use the sapm_effective_irradiance() function, the input parameters, and self.module_parameters to calculate effective irradiance.
sapm_spectral_loss(airmass_absolute) Use the sapm_spectral_loss() function, the input parameters, and self.module_parameters to calculate F1.
scale_voltage_current_power(data) Scales the voltage, current, and power of the data DataFrame by self.modules_per_string and self.strings_per_inverter.
singleaxis(apparent_zenith, apparent_azimuth) Get tracking data.
singlediode(photocurrent, …[, ivcurve_pnts]) Wrapper around the pvlib.pvsystem.singlediode() function.
snlinverter(v_dc, p_dc) Uses pvlib.inverter.sandia() to calculate AC power based on self.inverter_parameters and the input voltage and power.