"""
The ``temperature`` module contains functions for modeling temperature of
PV modules and cells.
"""
import numpy as np
import pandas as pd
from pvlib.tools import sind
from pvlib._deprecation import warn_deprecated
from pvlib.tools import _get_sample_intervals
import scipy
import scipy.constants
import warnings
TEMPERATURE_MODEL_PARAMETERS = {
'sapm': {
'open_rack_glass_glass': {'a': -3.47, 'b': -.0594, 'deltaT': 3},
'close_mount_glass_glass': {'a': -2.98, 'b': -.0471, 'deltaT': 1},
'open_rack_glass_polymer': {'a': -3.56, 'b': -.0750, 'deltaT': 3},
'insulated_back_glass_polymer': {'a': -2.81, 'b': -.0455, 'deltaT': 0},
},
'pvsyst': {'freestanding': {'u_c': 29.0, 'u_v': 0},
'insulated': {'u_c': 15.0, 'u_v': 0}}
}
"""Dictionary of temperature parameters organized by model.
There are keys for each model at the top level. Currently there are two models,
``'sapm'`` for the Sandia Array Performance Model, and ``'pvsyst'``. Each model
has a dictionary of configurations; a value is itself a dictionary containing
model parameters. Retrieve parameters by indexing the model and configuration
by name. Note: the keys are lower-cased and case sensitive.
Example
-------
Retrieve the open rack glass-polymer configuration for SAPM::
from pvlib.temperature import TEMPERATURE_MODEL_PARAMETERS
temperature_model_parameters = (
TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_polymer'])
# {'a': -3.56, 'b': -0.075, 'deltaT': 3}
"""
def _temperature_model_params(model, parameter_set):
try:
params = TEMPERATURE_MODEL_PARAMETERS[model]
return params[parameter_set]
except KeyError:
msg = ('{} is not a named set of parameters for the {} cell'
' temperature model.'
' See pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS'
' for names'.format(parameter_set, model))
raise KeyError(msg)
[docs]
def sapm_cell(poa_global, temp_air, wind_speed, a, b, deltaT,
irrad_ref=1000.):
r'''
Calculate cell temperature per the Sandia Array Performance Model.
See [1]_ for details on the Sandia Array Performance Model.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric
Wind speed at a height of 10 meters [m/s].
a : float
Parameter :math:`a` in :eq:`sapm1`.
b : float
Parameter :math:`b` in :eq:`sapm1`.
deltaT : float
Parameter :math:`\Delta T` in :eq:`sapm2` [C].
irrad_ref : float, default 1000
Reference irradiance, parameter :math:`E_{0}` in
:eq:`sapm2` [W/m^2].
Returns
-------
numeric, values in degrees C.
Notes
-----
The model for cell temperature :math:`T_{C}` is given by a pair of
equations (Eq. 11 and 12 in [1]_).
.. math::
:label: sapm1
T_{m} = E \times \exp (a + b \times WS) + T_{a}
.. math::
:label: sapm2
T_{C} = T_{m} + \frac{E}{E_{0}} \Delta T
The module back surface temperature :math:`T_{m}` is implemented in
:py:func:`~pvlib.temperature.sapm_module`.
Inputs to the model are plane-of-array irradiance :math:`E` (W/m2) and
ambient air temperature :math:`T_{a}` (C). Model parameters depend both on
the module construction and its mounting. Parameter sets are provided in
[1]_ for representative modules and mounting, and are coded for convenience
in :data:`~pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS`.
+---------------+----------------+-------+---------+---------------------+
| Module | Mounting | a | b | :math:`\Delta T [C]`|
+===============+================+=======+=========+=====================+
| glass/glass | open rack | -3.47 | -0.0594 | 3 |
+---------------+----------------+-------+---------+---------------------+
| glass/glass | close roof | -2.98 | -0.0471 | 1 |
+---------------+----------------+-------+---------+---------------------+
| glass/polymer | open rack | -3.56 | -0.075 | 3 |
+---------------+----------------+-------+---------+---------------------+
| glass/polymer | insulated back | -2.81 | -0.0455 | 0 |
+---------------+----------------+-------+---------+---------------------+
References
----------
.. [1] King, D. et al, 2004, "Sandia Photovoltaic Array Performance
Model", SAND Report 3535, Sandia National Laboratories, Albuquerque,
NM.
See also
--------
sapm_cell_from_module
sapm_module
Examples
--------
>>> from pvlib.temperature import sapm_cell, TEMPERATURE_MODEL_PARAMETERS
>>> params = TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass']
>>> sapm_cell(1000, 10, 0, **params)
44.11703066106086
'''
module_temperature = sapm_module(poa_global, temp_air, wind_speed,
a, b)
return sapm_cell_from_module(module_temperature, poa_global, deltaT,
irrad_ref)
[docs]
def sapm_module(poa_global, temp_air, wind_speed, a, b):
r'''
Calculate module back surface temperature per the Sandia Array
Performance Model.
See [1]_ for details on the Sandia Array Performance Model.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric
Wind speed at a height of 10 meters [m/s].
a : float
Parameter :math:`a` in :eq:`sapm1mod`.
b : float
Parameter :math:`b` in :eq:`sapm1mod`.
Returns
-------
numeric, values in degrees C.
Notes
-----
The model for module temperature :math:`T_{m}` is given by Eq. 11 in [1]_.
.. math::
:label: sapm1mod
T_{m} = E \times \exp (a + b \times WS) + T_{a}
Inputs to the model are plane-of-array irradiance :math:`E` (W/m2) and
ambient air temperature :math:`T_{a}` (C). Model outputs are surface
temperature at the back of the module :math:`T_{m}` and cell temperature
:math:`T_{C}`. Model parameters depend both on the module construction and
its mounting. Parameter sets are provided in [1]_ for representative
modules and mounting, and are coded for convenience in
:data:`~pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS`.
+---------------+----------------+-------+---------+---------------------+
| Module | Mounting | a | b | :math:`\Delta T [C]`|
+===============+================+=======+=========+=====================+
| glass/glass | open rack | -3.47 | -0.0594 | 3 |
+---------------+----------------+-------+---------+---------------------+
| glass/glass | close roof | -2.98 | -0.0471 | 1 |
+---------------+----------------+-------+---------+---------------------+
| glass/polymer | open rack | -3.56 | -0.075 | 3 |
+---------------+----------------+-------+---------+---------------------+
| glass/polymer | insulated back | -2.81 | -0.0455 | 0 |
+---------------+----------------+-------+---------+---------------------+
References
----------
.. [1] King, D. et al, 2004, "Sandia Photovoltaic Array Performance
Model", SAND Report 3535, Sandia National Laboratories, Albuquerque,
NM.
See also
--------
sapm_cell
sapm_cell_from_module
'''
return poa_global * np.exp(a + b * wind_speed) + temp_air
[docs]
def sapm_cell_from_module(module_temperature, poa_global, deltaT,
irrad_ref=1000.):
r'''
Calculate cell temperature from module temperature using the Sandia Array
Performance Model.
See [1]_ for details on the Sandia Array Performance Model.
Parameters
----------
module_temperature : numeric
Temperature of back of module surface [C].
poa_global : numeric
Total incident irradiance [W/m^2].
deltaT : float
Parameter :math:`\Delta T` in :eq:`sapm2_cell_from_mod` [C].
irrad_ref : float, default 1000
Reference irradiance, parameter :math:`E_{0}` in
:eq:`sapm2` [W/m^2].
Returns
-------
numeric, values in degrees C.
Notes
-----
The model for cell temperature :math:`T_{C}` is given by Eq. 12 in [1]_.
.. math::
:label: sapm2_cell_from_mod
T_{C} = T_{m} + \frac{E}{E_{0}} \Delta T
The module back surface temperature :math:`T_{m}` is implemented in
:py:func:`~pvlib.temperature.sapm_module`.
Model parameters depend both on the module construction and its mounting.
Parameter sets are provided in [1]_ for representative modules and
mounting, and are coded for convenience in
:data:`~pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS`.
+---------------+----------------+-------+---------+---------------------+
| Module | Mounting | a | b | :math:`\Delta T [C]`|
+===============+================+=======+=========+=====================+
| glass/glass | open rack | -3.47 | -0.0594 | 3 |
+---------------+----------------+-------+---------+---------------------+
| glass/glass | close roof | -2.98 | -0.0471 | 1 |
+---------------+----------------+-------+---------+---------------------+
| glass/polymer | open rack | -3.56 | -0.075 | 3 |
+---------------+----------------+-------+---------+---------------------+
| glass/polymer | insulated back | -2.81 | -0.0455 | 0 |
+---------------+----------------+-------+---------+---------------------+
References
----------
.. [1] King, D. et al, 2004, "Sandia Photovoltaic Array Performance
Model", SAND Report 3535, Sandia National Laboratories, Albuquerque,
NM.
See also
--------
sapm_cell
sapm_module
'''
return module_temperature + (poa_global / irrad_ref) * deltaT
[docs]
def pvsyst_cell(poa_global, temp_air, wind_speed=1.0, u_c=29.0, u_v=0.0,
module_efficiency=0.1, alpha_absorption=0.9):
r"""
Calculate cell temperature using an empirical heat loss factor model
as implemented in PVsyst.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric, default 1.0
Wind speed in m/s measured at the same height for which the wind loss
factor was determined. The default value 1.0 m/s is the wind
speed at module height used to determine NOCT. [m/s]
u_c : float, default 29.0
Combined heat loss factor coefficient. The default value is
representative of freestanding modules with the rear surfaces exposed
to open air (e.g., rack mounted). Parameter :math:`U_{c}` in
:eq:`pvsyst`.
:math:`\left[\frac{\text{W}/{\text{m}^2}}{\text{C}}\right]`
u_v : float, default 0.0
Combined heat loss factor influenced by wind. Parameter :math:`U_{v}`
in :eq:`pvsyst`.
:math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]`
module_efficiency : numeric, default 0.1
Module external efficiency as a fraction. Parameter :math:`\eta_{m}`
in :eq:`pvsyst`. Calculate as
:math:`\eta_{m} = DC\ power / (POA\ irradiance \times module\ area)`.
alpha_absorption : numeric, default 0.9
Absorption coefficient. Parameter :math:`\alpha` in :eq:`pvsyst`.
Returns
-------
numeric, values in degrees Celsius
Notes
-----
The Pvsyst model for cell temperature :math:`T_{C}` is given by
.. math::
:label: pvsyst
T_{C} = T_{a} + \frac{\alpha E (1 - \eta_{m})}{U_{c} + U_{v} \times WS}
Inputs to the model are plane-of-array irradiance :math:`E` (W/m2), ambient
air temperature :math:`T_{a}` (C) and wind speed :math:`WS` (m/s). Model
output is cell temperature :math:`T_{C}`. Model parameters depend both on
the module construction and its mounting. Parameters are provided in
[1]_ for open (freestanding) and close (insulated) mounting configurations,
, and are coded for convenience in
:data:`~pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS`. The heat loss
factors provided represent the combined effect of convection, radiation and
conduction, and their values are experimentally determined.
+--------------+---------------+---------------+
| Mounting | :math:`U_{c}` | :math:`U_{v}` |
+==============+===============+===============+
| freestanding | 29.0 | 0.0 |
+--------------+---------------+---------------+
| insulated | 15.0 | 0.0 |
+--------------+---------------+---------------+
References
----------
.. [1] "PVsyst 7 Help", [Online]. Available:
https://www.pvsyst.com/help/index.html?thermal_loss.htm.
[Accessed: 30-Jan-2024].
.. [2] Faiman, D. (2008). "Assessing the outdoor operating temperature of
photovoltaic modules." Progress in Photovoltaics 16(4): 307-315.
Examples
--------
>>> from pvlib.temperature import pvsyst_cell, TEMPERATURE_MODEL_PARAMETERS
>>> params = TEMPERATURE_MODEL_PARAMETERS['pvsyst']['freestanding']
>>> pvsyst_cell(1000, 10, **params)
37.93103448275862
""" # noQA: E501
total_loss_factor = u_c + u_v * wind_speed
heat_input = poa_global * alpha_absorption * (1 - module_efficiency)
temp_difference = heat_input / total_loss_factor
return temp_air + temp_difference
[docs]
def faiman(poa_global, temp_air, wind_speed=1.0, u0=25.0, u1=6.84):
r'''
Calculate cell or module temperature using the Faiman model.
The Faiman model uses an empirical heat loss factor model [1]_ and is
adopted in the IEC 61853 standards [2]_ and [3]_.
Usage of this model in the IEC 61853 standard does not distinguish
between cell and module temperature.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric, default 1.0
Wind speed in m/s measured at the same height for which the wind loss
factor was determined. The default value 1.0 m/s is the wind
speed at module height used to determine NOCT. [m/s]
u0 : numeric, default 25.0
Combined heat loss factor coefficient. The default value is one
determined by Faiman for 7 silicon modules
in the Negev desert on an open rack at 30.9° tilt.
:math:`\left[\frac{\text{W}/{\text{m}^2}}{\text{C}}\right]`
u1 : numeric, default 6.84
Combined heat loss factor influenced by wind. The default value is one
determined by Faiman for 7 silicon modules
in the Negev desert on an open rack at 30.9° tilt.
:math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]`
Returns
-------
numeric, values in degrees Celsius
Notes
-----
All arguments may be scalars or vectors. If multiple arguments
are vectors they must be the same length.
References
----------
.. [1] Faiman, D. (2008). "Assessing the outdoor operating temperature of
photovoltaic modules." Progress in Photovoltaics 16(4): 307-315.
:doi:`10.1002/pip.813`
.. [2] "IEC 61853-2 Photovoltaic (PV) module performance testing and energy
rating - Part 2: Spectral responsivity, incidence angle and module
operating temperature measurements". IEC, Geneva, 2018.
.. [3] "IEC 61853-3 Photovoltaic (PV) module performance testing and energy
rating - Part 3: Energy rating of PV modules". IEC, Geneva, 2018.
See also
--------
pvlib.temperature.faiman_rad
''' # noQA: E501
# Contributed by Anton Driesse (@adriesse), PV Performance Labs. Dec., 2019
# The following lines may seem odd since u0 & u1 are probably scalar,
# but it serves an indirect and easy way of allowing lists and
# tuples for the other function arguments.
u0 = np.asanyarray(u0)
u1 = np.asanyarray(u1)
total_loss_factor = u0 + u1 * wind_speed
heat_input = poa_global
temp_difference = heat_input / total_loss_factor
return temp_air + temp_difference
[docs]
def faiman_rad(poa_global, temp_air, wind_speed=1.0, ir_down=None,
u0=25.0, u1=6.84, sky_view=1.0, emissivity=0.88):
r'''
Calculate cell or module temperature using the Faiman model augmented
with a radiative loss term.
The Faiman model uses an empirical heat loss factor model [1]_ and is
adopted in the IEC 61853 standards [2]_ and [3]_. The radiative loss
term was proposed and developed by Driesse [4]_.
The model can be used to represent cell or module temperature.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric, default 1.0
Wind speed measured at the same height for which the wind loss
factor was determined. The default value 1.0 m/s is the wind
speed at module height used to determine NOCT. [m/s]
ir_down : numeric, default 0.0
Downwelling infrared radiation from the sky, measured on a horizontal
surface. [W/m^2]
u0 : numeric, default 25.0
Combined heat loss factor coefficient. The default value is one
determined by Faiman for 7 silicon modules
in the Negev desert on an open rack at 30.9° tilt.
:math:`\left[\frac{\text{W}/{\text{m}^2}}{\text{C}}\right]`
u1 : numeric, default 6.84
Combined heat loss factor influenced by wind. The default value is one
determined by Faiman for 7 silicon modules
in the Negev desert on an open rack at 30.9° tilt.
:math:`\left[ \frac{\text{W}/\text{m}^2}{\text{C}\ \left( \text{m/s} \right)} \right]`
sky_view : numeric, default 1.0
Effective view factor limiting the radiative exchange between the
module and the sky. For a tilted array the expressions
(1 + 3*cos(tilt)) / 4 can be used as a first estimate for sky_view
as discussed in [4]_. The default value is for a horizontal module.
[unitless]
emissivity : numeric, default 0.88
Infrared emissivity of the module surface facing the sky. The default
value represents the middle of a range of values found in the
literature. [unitless]
Returns
-------
numeric, values in degrees Celsius
Notes
-----
All arguments may be scalars or vectors. If multiple arguments
are vectors they must be the same length.
When only irradiance, air temperature and wind speed inputs are provided
(`ir_down` is `None`) this function calculates the same device temperature
as the original faiman model. When down-welling long-wave radiation data
are provided as well (`ir_down` is not None) the default u0 and u1 values
from the original model should not be used because a portion of the
radiative losses would be double-counted.
References
----------
.. [1] Faiman, D. (2008). "Assessing the outdoor operating temperature of
photovoltaic modules." Progress in Photovoltaics 16(4): 307-315.
:doi:`10.1002/pip.813`
.. [2] "IEC 61853-2 Photovoltaic (PV) module performance testing and energy
rating - Part 2: Spectral responsivity, incidence angle and module
operating temperature measurements". IEC, Geneva, 2018.
.. [3] "IEC 61853-3 Photovoltaic (PV) module performance testing and energy
rating - Part 3: Energy rating of PV modules". IEC, Geneva, 2018.
.. [4] Driesse, A. et al (2022) "Improving Common PV Module Temperature
Models by Incorporating Radiative Losses to the Sky". SAND2022-11604.
:doi:`10.2172/1884890`
See also
--------
pvlib.temperature.faiman
''' # noQA: E501
# Contributed by Anton Driesse (@adriesse), PV Performance Labs. Nov., 2022
abs_zero = -273.15
sigma = scipy.constants.Stefan_Boltzmann
if ir_down is None:
qrad_sky = 0.0
else:
ir_up = sigma * ((temp_air - abs_zero)**4)
qrad_sky = emissivity * sky_view * (ir_up - ir_down)
heat_input = poa_global - qrad_sky
total_loss_factor = u0 + u1 * wind_speed
temp_difference = heat_input / total_loss_factor
return temp_air + temp_difference
[docs]
def ross(poa_global, temp_air, noct):
r'''
Calculate cell temperature using the Ross model.
The Ross model [1]_ assumes the difference between cell temperature
and ambient temperature is proportional to the plane of array irradiance,
and assumes wind speed of 1 m/s. The model implicitly assumes steady or
slowly changing irradiance conditions.
Parameters
----------
poa_global : numeric
Total incident irradiance. [W/m^2]
temp_air : numeric
Ambient dry bulb temperature. [C]
noct : numeric
Nominal operating cell temperature [C], determined at conditions of
800 W/m^2 irradiance, 20 C ambient air temperature and 1 m/s wind.
Returns
-------
cell_temperature : numeric
Cell temperature. [C]
Notes
-----
The Ross model for cell temperature :math:`T_{C}` is given in [1]_ as
.. math::
T_{C} = T_{a} + \frac{NOCT - 20}{80} S
where :math:`S` is the plane of array irradiance in :math:`mW/{cm}^2`.
This function expects irradiance in :math:`W/m^2`.
References
----------
.. [1] Ross, R. G. Jr., (1981). "Design Techniques for Flat-Plate
Photovoltaic Arrays". 15th IEEE Photovoltaic Specialist Conference,
Orlando, FL.
'''
# factor of 0.1 converts irradiance from W/m2 to mW/cm2
return temp_air + (noct - 20.) / 80. * poa_global * 0.1
def _fuentes_hconv(tave, windmod, tinoct, temp_delta, xlen, tilt,
check_reynold):
# Calculate the convective coefficient as in Fuentes 1987 -- a mixture of
# free, laminar, and turbulent convection.
densair = 0.003484 * 101325.0 / tave # density
visair = 0.24237e-6 * tave**0.76 / densair # kinematic viscosity
condair = 2.1695e-4 * tave**0.84 # thermal conductivity
reynold = windmod * xlen / visair
# the boundary between laminar and turbulent is modeled as an abrupt
# change at Re = 1.2e5:
if check_reynold and reynold > 1.2e5:
# turbulent convection
hforce = 0.0282 / reynold**0.2 * densair * windmod * 1007 / 0.71**0.4
else:
# laminar convection
hforce = 0.8600 / reynold**0.5 * densair * windmod * 1007 / 0.71**0.67
# free convection via Grashof number
# NB: Fuentes hardwires sind(tilt) as 0.5 for tilt=30
grashof = 9.8 / tave * temp_delta * xlen**3 / visair**2 * sind(tilt)
# product of Nusselt number and (k/l)
hfree = 0.21 * (grashof * 0.71)**0.32 * condair / xlen
# combine free and forced components
hconv = (hfree**3 + hforce**3)**(1/3)
return hconv
def _hydraulic_diameter(width, height):
# calculate the hydraulic diameter of a rectangle
return 2 * (width * height) / (width + height)
[docs]
def fuentes(poa_global, temp_air, wind_speed, noct_installed, module_height=5,
wind_height=9.144, emissivity=0.84, absorption=0.83,
surface_tilt=30, module_width=0.31579, module_length=1.2):
"""
Calculate cell or module temperature using the Fuentes model.
The Fuentes model is a first-principles heat transfer energy balance
model [1]_ that is used in PVWatts for cell temperature modeling [2]_.
Parameters
----------
poa_global : pandas Series
Total incident irradiance [W/m^2]
temp_air : pandas Series
Ambient dry bulb temperature [C]
wind_speed : pandas Series
Wind speed [m/s]
noct_installed : float
The "installed" nominal operating cell temperature as defined in [1]_.
PVWatts assumes this value to be 45 C for rack-mounted arrays and
49 C for roof mount systems with restricted air flow around the
module. [C]
module_height : float, default 5.0
The height above ground of the center of the module. The PVWatts
default is 5.0 [m]
wind_height : float, default 9.144
The height above ground at which ``wind_speed`` is measured. The
PVWatts default is 9.144 [m]
emissivity : float, default 0.84
The effectiveness of the module at radiating thermal energy. [unitless]
absorption : float, default 0.83
The fraction of incident irradiance that is converted to thermal
energy in the module. [unitless]
surface_tilt : float, default 30
Module tilt from horizontal. If not provided, the default value
of 30 degrees from [1]_ and [2]_ is used. [degrees]
module_width : float, default 0.31579
Module width. The default value of 0.31579 meters in combination with
the default `module_length` gives a hydraulic diameter of 0.5 as
assumed in [1]_ and [2]_. [m]
module_length : float, default 1.2
Module length. The default value of 1.2 meters in combination with
the default `module_width` gives a hydraulic diameter of 0.5 as
assumed in [1]_ and [2]_. [m]
Returns
-------
temperature_cell : pandas Series
The modeled cell temperature [C]
Notes
-----
This function returns slightly different values from PVWatts at night
and just after dawn. This is because the SAM SSC assumes that module
temperature equals ambient temperature when irradiance is zero so it can
skip the heat balance calculation at night.
References
----------
.. [1] Fuentes, M. K., 1987, "A Simplifed Thermal Model for Flat-Plate
Photovoltaic Arrays", SAND85-0330, Sandia National Laboratories,
Albuquerque NM.
http://prod.sandia.gov/techlib/access-control.cgi/1985/850330.pdf
.. [2] Dobos, A. P., 2014, "PVWatts Version 5 Manual", NREL/TP-6A20-62641,
National Renewable Energy Laboratory, Golden CO.
:doi:`10.2172/1158421`.
"""
# ported from the FORTRAN77 code provided in Appendix A of Fuentes 1987;
# nearly all variable names are kept the same for ease of comparison.
boltz = 5.669e-8
emiss = emissivity
absorp = absorption
xlen = _hydraulic_diameter(module_width, module_length)
# cap0 has units of [J / (m^2 K)], equal to mass per unit area times
# specific heat of the module.
cap0 = 11000
tinoct = noct_installed + 273.15
# convective coefficient of top surface of module at NOCT
windmod = 1.0
tave = (tinoct + 293.15) / 2
hconv = _fuentes_hconv(tave, windmod, tinoct, tinoct - 293.15, xlen,
surface_tilt, False)
# determine the ground temperature ratio and the ratio of the total
# convection to the top side convection
hground = emiss * boltz * (tinoct**2 + 293.15**2) * (tinoct + 293.15)
backrat = (
absorp * 800.0
- emiss * boltz * (tinoct**4 - 282.21**4)
- hconv * (tinoct - 293.15)
) / ((hground + hconv) * (tinoct - 293.15))
tground = (tinoct**4 - backrat * (tinoct**4 - 293.15**4))**0.25
tground = np.clip(tground, 293.15, tinoct)
tgrat = (tground - 293.15) / (tinoct - 293.15)
convrat = (absorp * 800 - emiss * boltz * (
2 * tinoct**4 - 282.21**4 - tground**4)) / (hconv * (tinoct - 293.15))
# adjust the capacitance (thermal mass) of the module based on the INOCT.
# It is a function of INOCT because high INOCT implies thermal coupling
# with the racking (e.g. roofmount), so the thermal mass is increased.
# `cap` has units J/(m^2 C) -- see Table 3, Equations 26 & 27
cap = cap0
if tinoct > 321.15:
cap = cap * (1 + (tinoct - 321.15) / 12)
# iterate through timeseries inputs
sun0 = 0
# n.b. the way Fuentes calculates the first timedelta makes it seem like
# the value doesn't matter -- rather than recreate it here, just assume
# it's the same as the second timedelta:
timedelta_seconds = poa_global.index.to_series().diff().dt.total_seconds()
timedelta_hours = timedelta_seconds / 3600
timedelta_hours.iloc[0] = timedelta_hours.iloc[1]
tamb_array = temp_air + 273.15
sun_array = poa_global * absorp
# Two of the calculations are easily vectorized, so precalculate them:
# sky temperature -- Equation 24
tsky_array = 0.68 * (0.0552 * tamb_array**1.5) + 0.32 * tamb_array
# wind speed at module height -- Equation 22
# not sure why the 1e-4 factor is included -- maybe the equations don't
# behave well if wind == 0?
windmod_array = wind_speed * (module_height/wind_height)**0.2 + 1e-4
tmod0 = 293.15
tmod_array = np.zeros_like(poa_global)
iterator = zip(tamb_array, sun_array, windmod_array, tsky_array,
timedelta_hours)
for i, (tamb, sun, windmod, tsky, dtime) in enumerate(iterator):
# solve the heat transfer equation, iterating because the heat loss
# terms depend on tmod. NB Fuentes doesn't show that 10 iterations is
# sufficient for convergence.
tmod = tmod0
for j in range(10):
# overall convective coefficient
tave = (tmod + tamb) / 2
hconv = convrat * _fuentes_hconv(tave, windmod, tinoct,
abs(tmod-tamb), xlen,
surface_tilt, True)
# sky radiation coefficient (Equation 3)
hsky = emiss * boltz * (tmod**2 + tsky**2) * (tmod + tsky)
# ground radiation coeffieicient (Equation 4)
tground = tamb + tgrat * (tmod - tamb)
hground = emiss * boltz * (tmod**2 + tground**2) * (tmod + tground)
# thermal lag -- Equation 8
eigen = - (hconv + hsky + hground) / cap * dtime * 3600
# not sure why this check is done, maybe as a speed optimization?
if eigen > -10:
ex = np.exp(eigen)
else:
ex = 0
# Equation 7 -- note that `sun` and `sun0` already account for
# absorption (alpha)
tmod = tmod0 * ex + (
(1 - ex) * (
hconv * tamb
+ hsky * tsky
+ hground * tground
+ sun0
+ (sun - sun0) / eigen
) + sun - sun0
) / (hconv + hsky + hground)
tmod_array[i] = tmod
tmod0 = tmod
sun0 = sun
return pd.Series(tmod_array - 273.15, index=poa_global.index, name='tmod')
def _adj_for_mounting_standoff(x):
# supports noct cell temperature function. Except for x > 3.5, the SAM code
# and documentation aren't clear on the precise intervals. The choice of
# < or <= here is pvlib's.
return np.piecewise(x, [x <= 0, (x > 0) & (x < 0.5),
(x >= 0.5) & (x < 1.5), (x >= 1.5) & (x < 2.5),
(x >= 2.5) & (x <= 3.5), x > 3.5],
[0., 18., 11., 6., 2., 0.])
[docs]
def noct_sam(poa_global, temp_air, wind_speed, noct, module_efficiency,
effective_irradiance=None, transmittance_absorptance=0.9,
array_height=1, mount_standoff=4):
r'''
Cell temperature model from the System Advisor Model (SAM).
The model is described in [1]_, Section 10.6.
Parameters
----------
poa_global : numeric
Total incident irradiance. [W/m^2]
temp_air : numeric
Ambient dry bulb temperature. [C]
wind_speed : numeric
Wind speed in m/s measured at the same height for which the wind loss
factor was determined. The default value 1.0 m/s is the wind
speed at module height used to determine NOCT. [m/s]
noct : float
Nominal operating cell temperature [C], determined at conditions of
800 W/m^2 irradiance, 20 C ambient air temperature and 1 m/s wind.
module_efficiency : float
Module external efficiency [unitless] at reference conditions of
1000 W/m^2 and 20C. Denoted as :math:`eta_{m}` in [1]_. Calculate as
:math:`\eta_{m} = \frac{V_{mp} I_{mp}}{A \times 1000 W/m^2}`
where A is module area [m^2].
effective_irradiance : numeric, optional
The irradiance that is converted to photocurrent. If not specified,
assumed equal to poa_global. [W/m^2]
transmittance_absorptance : numeric, default 0.9
Coefficient for combined transmittance and absorptance effects.
[unitless]
array_height : int, default 1
Height of array above ground in stories (one story is about 3m). Must
be either 1 or 2. For systems elevated less than one story, use 1.
If system is elevated more than two stories, use 2.
mount_standoff : numeric, default 4
Distance between array mounting and mounting surface. Use default
if system is ground-mounted. [inches]
Returns
-------
cell_temperature : numeric
Cell temperature. [C]
Raises
------
ValueError
If array_height is an invalid value (must be 1 or 2).
References
----------
.. [1] Gilman, P., Dobos, A., DiOrio, N., Freeman, J., Janzou, S.,
Ryberg, D., 2018, "SAM Photovoltaic Model Technical Reference
Update", National Renewable Energy Laboratory Report
NREL/TP-6A20-67399.
'''
# in [1] the denominator for irr_ratio isn't precisely clear. From
# reproducing output of the SAM function noct_celltemp_t, we determined
# that:
# - G_total (SAM) is broadband plane-of-array irradiance before
# reflections. Equivalent to pvlib variable poa_global
# - Geff_total (SAM) is POA irradiance after reflections and
# adjustment for spectrum. Equivalent to effective_irradiance
if effective_irradiance is None:
irr_ratio = 1.
else:
irr_ratio = effective_irradiance / poa_global
if array_height == 1:
wind_adj = 0.51 * wind_speed
elif array_height == 2:
wind_adj = 0.61 * wind_speed
else:
raise ValueError(
f'array_height must be 1 or 2, {array_height} was given')
noct_adj = noct + _adj_for_mounting_standoff(mount_standoff)
tau_alpha = transmittance_absorptance * irr_ratio
# [1] Eq. 10.37 isn't clear on exactly what "G" is. SAM SSC code uses
# poa_global where G appears
cell_temp_init = poa_global / 800. * (noct_adj - 20.)
heat_loss = 1 - module_efficiency / tau_alpha
wind_loss = 9.5 / (5.7 + 3.8 * wind_adj)
return temp_air + cell_temp_init * heat_loss * wind_loss
[docs]
def prilliman(temp_cell, wind_speed, unit_mass=11.1, coefficients=None):
"""
Smooth short-term cell temperature transients using the Prilliman model.
The Prilliman et al. model [1]_ applies a weighted moving average to
the output of a steady-state cell temperature model to account for
a module's thermal inertia by smoothing the cell temperature's
response to changing weather conditions.
.. warning::
This implementation requires the time series inputs to be regularly
sampled in time with frequency less than 20 minutes. Data with
irregular time steps (including from data gaps, missing leap days,
etc) should be resampled prior to using this function.
Parameters
----------
temp_cell : pandas.Series with DatetimeIndex
Cell temperature modeled with steady-state assumptions. [C]
wind_speed : pandas.Series
Wind speed, adjusted to correspond to array height [m/s]
unit_mass : float, default 11.1
Total mass of module divided by its one-sided surface area [kg/m^2]
One-sided surface area is equal to module height times width
coefficients : 4-element list-like, optional
Values for coefficients a_0 through a_3, see Eq. 9 of [1]_
Returns
-------
temp_cell : pandas.Series
Smoothed version of the input cell temperature. Input temperature
with sampling interval >= 20 minutes is returned unchanged. [C]
Notes
-----
This smoothing model was developed and validated using the SAPM
cell temperature model for the steady-state input.
Smoothing is done using the 20 minute window behind each temperature
value. At the beginning of the series where a full 20 minute window is not
possible, partial windows are used instead.
Output ``temp_cell[k]`` is NaN when input ``wind_speed[k]`` is NaN, or
when no non-NaN data are in the input temperature for the 20 minute window
preceding index ``k``.
References
----------
.. [1] M. Prilliman, J. S. Stein, D. Riley and G. Tamizhmani,
"Transient Weighted Moving-Average Model of Photovoltaic Module
Back-Surface Temperature," IEEE Journal of Photovoltaics, 2020.
:doi:`10.1109/JPHOTOV.2020.2992351`
"""
# `sample_interval` in minutes:
sample_interval, samples_per_window = \
_get_sample_intervals(times=temp_cell.index, win_length=20)
if sample_interval >= 20:
warnings.warn("temperature.prilliman only applies smoothing when "
"the sampling interval is shorter than 20 minutes "
f"(input sampling interval: {sample_interval} minutes);"
" returning input temperature series unchanged")
# too coarsely sampled for smoothing to be relevant
return temp_cell
# handle cases where the time series is shorter than 20 minutes total
samples_per_window = min(samples_per_window, len(temp_cell))
# prefix with NaNs so that the rolling window is "full",
# even for the first actual value:
prefix = np.full(samples_per_window, np.nan)
temp_cell_prefixed = np.append(prefix, temp_cell.values)
# generate matrix of integers for creating windows with indexing
H = scipy.linalg.hankel(np.arange(samples_per_window),
np.arange(samples_per_window - 1,
len(temp_cell_prefixed) - 1))
# each row of `subsets` is the values in one window
subsets = temp_cell_prefixed[H].T
# `subsets` now looks like this (for 5-minute data, so 4 samples/window)
# where "1." is a stand-in for the actual temperature values
# [[nan, nan, nan, nan],
# [nan, nan, nan, 1.],
# [nan, nan, 1., 1.],
# [nan, 1., 1., 1.],
# [ 1., 1., 1., 1.],
# [ 1., 1., 1., 1.],
# [ 1., 1., 1., 1.],
# ...
# calculate weights for the values in each window
if coefficients is not None:
a = coefficients
else:
# values from [1], Table II
a = [0.0046, 0.00046, -0.00023, -1.6e-5]
wind_speed = wind_speed.values
p = a[0] + a[1]*wind_speed + a[2]*unit_mass + a[3]*wind_speed*unit_mass
# calculate the time lag for each sample in the window, paying attention
# to units (seconds for `timedeltas`, minutes for `sample_interval`)
timedeltas = np.arange(samples_per_window, 0, -1) * sample_interval * 60
weights = np.exp(-p[:, np.newaxis] * timedeltas)
# Set weights corresponding to the prefix values to zero; otherwise the
# denominator of the weighted average below would be wrong.
# Weights corresponding to (non-prefix) NaN values must be zero too
# for the same reason.
# Right now `weights` is something like this
# (using 5-minute inputs, so 4 samples per window -> 4 values per row):
# [[0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# ...
# After the next line, the NaNs in `subsets` will be zeros in `weights`,
# like this (with more zeros for any NaNs in the input temperature):
# [[0. , 0. , 0. , 0. ],
# [0. , 0. , 0. , 0.4972],
# [0. , 0. , 0.2472, 0.4972],
# [0. , 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# [0.0611, 0.1229, 0.2472, 0.4972],
# ...
weights[np.isnan(subsets)] = 0
# change the first row of weights from zero to nan -- this is a
# trick to prevent div by zero warning when dividing by summed weights
weights[0, :] = np.nan
# finally, take the weighted average of each window:
# use np.nansum for numerator to ignore nans in input temperature, but
# np.sum for denominator to propagate nans in input wind speed.
numerator = np.nansum(subsets * weights, axis=1)
denominator = np.sum(weights, axis=1)
smoothed = numerator / denominator
smoothed[0] = temp_cell.values[0]
smoothed = pd.Series(smoothed, index=temp_cell.index)
return smoothed
[docs]
def generic_linear(poa_global, temp_air, wind_speed, u_const, du_wind,
module_efficiency, absorptance):
"""
Calculate cell temperature using a generic linear heat loss factor model.
The parameters for this model can be obtained from other model
parameters using :py:class:`GenericLinearModel`. A description of this
model and its relationship to other temperature models is found in [1]_.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric
Wind speed at a height of 10 meters [m/s].
u_const : float
Combined heat transfer coefficient at zero wind speed [(W/m^2)/C]
du_wind : float
Influence of wind speed on combined heat transfer coefficient
[(W/m^2)/C/(m/s)]
module_efficiency : float
The electrical efficiency of the module. [-]
absorptance : float
The light absorptance of the module. [-]
Returns
-------
numeric, values in degrees C.
References
----------
.. [1] A. Driesse et al, "PV Module Operating Temperature
Model Equivalence and Parameter Translation". 2022 IEEE
Photovoltaic Specialists Conference (PVSC), 2022.
See also
--------
pvlib.temperature.GenericLinearModel
"""
# Contributed by Anton Driesse (@adriesse), PV Performance Labs, Sept. 2022
heat_input = poa_global * (absorptance - module_efficiency)
total_loss_factor = u_const + du_wind * wind_speed
temp_difference = heat_input / total_loss_factor
return temp_air + temp_difference
[docs]
class GenericLinearModel():
'''
A class that can both use and convert parameters of linear module
temperature models: faiman, pvsyst, noct_sam, sapm_module
and generic_linear.
Parameters are converted between models by first converting
to the generic linear heat transfer model [1]_ by the ``use_``
methods. The equivalent parameters for the target temperature
model are then obtained by the ``to_`` method.
Parameters are returned as a dictionary that is compatible with the
target model function to use in simulations.
An instance of the class represents a specific module type and
the parameters ``module_efficiency`` and ``absorptance`` are required.
Although some temperature models do not use these properties, they
nevertheless exist and affect operating temperature. Values
should be representative of the conditions at which the input
model parameters were determined (usually high irradiance).
Parameters
----------
module_efficiency : float
The electrical efficiency of the module. [-]
absorptance : float
The light absorptance of the module. [-]
Notes
-----
After creating a GenericLinearModel object using the module properties,
one of the ``use_`` methods must be called to provide thermal model
parameters. If this is not done, the ``to_`` methods will return ``nan``
values.
References
----------
.. [1] A. Driesse et al, "PV Module Operating Temperature
Model Equivalence and Parameter Translation". 2022 IEEE
Photovoltaic Specialists Conference (PVSC), 2022.
Examples
--------
>>> glm = GenericLinearModel(module_efficiency=0.19, absorptance=0.88)
>>> glm.use_faiman(16, 8)
GenericLinearModel: {'u_const': 11.04, 'du_wind': 5.52,
'eta': 0.19, 'alpha': 0.88}
>>> glm.to_pvsyst()
{'u_c': 11.404800000000002, 'u_v': 5.702400000000001,
'module_efficiency': 0.19, 'alpha_absorption': 0.88}
>>> parmdict = glm.to_pvsyst()
>>> pvsyst_cell(800, 20, 1, **parmdict)
53.33333333333333
See also
--------
pvlib.temperature.generic_linear
'''
# Contributed by Anton Driesse (@adriesse), PV Performance Labs, Sept. 2022
[docs]
def __init__(self, module_efficiency, absorptance):
self.u_const = np.nan
self.du_wind = np.nan
self.eta = module_efficiency
self.alpha = absorptance
return None
def __repr__(self):
return self.__class__.__name__ + ': ' + vars(self).__repr__()
def __call__(self, poa_global, temp_air, wind_speed,
module_efficiency=None):
'''
Calculate module temperature using the generic_linear model and
previously initialized parameters.
Parameters
----------
poa_global : numeric
Total incident irradiance [W/m^2].
temp_air : numeric
Ambient dry bulb temperature [C].
wind_speed : numeric
Wind speed in m/s measured at the same height for which the wind
loss factor was determined. [m/s]
module_efficiency : numeric, optional
Module electrical efficiency. The default value is the one
that was specified initially. [-]
Returns
-------
numeric, values in degrees Celsius
See also
--------
get_generic
pvlib.temperature.generic_linear
'''
if module_efficiency is None:
module_efficiency = self.eta
return generic_linear(poa_global, temp_air, wind_speed,
self.u_const, self.du_wind,
module_efficiency, self.alpha)
[docs]
def get_generic_linear(self):
'''
Get the generic linear model parameters to use with the separate
generic linear module temperature calculation function.
Returns
-------
model_parameters : dict
See also
--------
pvlib.temperature.generic_linear
'''
return dict(u_const=self.u_const,
du_wind=self.du_wind,
module_efficiency=self.eta,
absorptance=self.alpha)
[docs]
def use_faiman(self, u0, u1):
'''
Use the Faiman model parameters to set the generic_model equivalents.
Parameters
----------
u0, u1 : float
See :py:func:`pvlib.temperature.faiman` for details.
'''
net_absorptance = self.alpha - self.eta
self.u_const = u0 * net_absorptance
self.du_wind = u1 * net_absorptance
return self
[docs]
def to_faiman(self):
'''
Convert the generic model parameters to Faiman equivalents.
Returns
----------
model_parameters : dict
See :py:func:`pvlib.temperature.faiman` for
model parameter details.
'''
net_absorptance = self.alpha - self.eta
u0 = self.u_const / net_absorptance
u1 = self.du_wind / net_absorptance
return dict(u0=u0, u1=u1)
[docs]
def use_pvsyst(self, u_c, u_v, module_efficiency=None,
alpha_absorption=None):
'''
Use the PVsyst model parameters to set the generic_model equivalents.
Parameters
----------
u_c, u_v : float
See :py:func:`pvlib.temperature.pvsyst_cell` for details.
module_efficiency, alpha_absorption : float, optional
See :py:func:`pvlib.temperature.pvsyst_cell` for details.
Notes
-----
The optional parameters are primarily for convenient compatibility
with existing function signatures.
'''
if module_efficiency is not None:
self.eta = module_efficiency
if alpha_absorption is not None:
self.alpha = alpha_absorption
net_absorptance_glm = self.alpha - self.eta
net_absorptance_pvsyst = self.alpha * (1.0 - self.eta)
absorptance_ratio = net_absorptance_glm / net_absorptance_pvsyst
self.u_const = u_c * absorptance_ratio
self.du_wind = u_v * absorptance_ratio
return self
[docs]
def to_pvsyst(self):
'''
Convert the generic model parameters to PVsyst model equivalents.
Returns
----------
model_parameters : dict
See :py:func:`pvlib.temperature.pvsyst_cell` for
model parameter details.
'''
net_absorptance_glm = self.alpha - self.eta
net_absorptance_pvsyst = self.alpha * (1.0 - self.eta)
absorptance_ratio = net_absorptance_glm / net_absorptance_pvsyst
u_c = self.u_const / absorptance_ratio
u_v = self.du_wind / absorptance_ratio
return dict(u_c=u_c,
u_v=u_v,
module_efficiency=self.eta,
alpha_absorption=self.alpha)
[docs]
def use_noct_sam(self, noct, module_efficiency=None,
transmittance_absorptance=None):
'''
Use the NOCT SAM model parameters to set the generic_model equivalents.
Parameters
----------
noct : float
See :py:func:`pvlib.temperature.noct_sam` for details.
module_efficiency, transmittance_absorptance : float, optional
See :py:func:`pvlib.temperature.noct_sam` for details.
Notes
-----
The optional parameters are primarily for convenient compatibility
with existing function signatures.
'''
if module_efficiency is not None:
self.eta = module_efficiency
if transmittance_absorptance is not None:
self.alpha = transmittance_absorptance
# NOCT is determined with wind speed near module height
# the adjustment reduces the wind coefficient for use with 10m wind
wind_adj = 0.51
u_noct = 800.0 * self.alpha / (noct - 20.0)
self.u_const = u_noct * 0.6
self.du_wind = u_noct * 0.4 * wind_adj
return self
[docs]
def to_noct_sam(self):
'''
Convert the generic model parameters to NOCT SAM model equivalents.
Returns
----------
model_parameters : dict
See :py:func:`pvlib.temperature.noct_sam` for
model parameter details.
'''
# NOCT is determined with wind speed near module height
# the adjustment reduces the wind coefficient for use with 10m wind
wind_adj = 0.51
u_noct = self.u_const + self.du_wind / wind_adj
noct = 20.0 + (800.0 * self.alpha) / u_noct
return dict(noct=noct,
module_efficiency=self.eta,
transmittance_absorptance=self.alpha)
[docs]
def use_sapm(self, a, b, wind_fit_low=1.4, wind_fit_high=5.4):
'''
Use the SAPM model parameters to set the generic_model equivalents.
In the SAPM the heat transfer coefficient increases exponentially
with windspeed, whereas in the other models the increase is linear.
This function equates the generic linear model to SAPM at two
specified winds speeds, thereby defining a linear approximation
for the exponential behavior.
Parameters
----------
a, b : float
See :py:func:`pvlib.temperature.sapm_module` for details.
wind_fit_low : float, optional
First wind speed value at which the generic linear model
must be equal to the SAPM model. [m/s]
wind_fit_high : float, optional
Second wind speed value at which the generic linear model
must be equal to the SAPM model. [m/s]
Notes
-----
The two default wind speed values are based on measurements
at 10 m height. Both the SAPM model and the conversion
functions can work with wind speed data at different heights as
long as the same height is used consistently throughout.
'''
u_low = 1.0 / np.exp(a + b * wind_fit_low)
u_high = 1.0 / np.exp(a + b * wind_fit_high)
du_wind = (u_high - u_low) / (wind_fit_high - wind_fit_low)
u_const = u_low - du_wind * wind_fit_low
net_absorptance = self.alpha - self.eta
self.u_const = u_const * net_absorptance
self.du_wind = du_wind * net_absorptance
return self
[docs]
def to_sapm(self, wind_fit_low=1.4, wind_fit_high=5.4):
'''
Convert the generic model parameters to SAPM model equivalents.
In the SAPM the heat transfer coefficient increases exponentially
with windspeed, whereas in the other models the increase is linear.
This function equates SAPM to the generic linear model at two
specified winds speeds, thereby defining an exponential approximation
for the linear behavior.
Parameters
----------
wind_fit_low : float, optional
First wind speed value at which the generic linear model
must be equal to the SAPM model. [m/s]
wind_fit_high : float, optional
Second wind speed value at which the generic linear model
must be equal to the SAPM model. [m/s]
Returns
----------
model_parameters : dict
See :py:func:`pvlib.temperature.sapm_module` for
model parameter details.
Notes
-----
The two default wind speed values are based on measurements
at 10 m height. Both the SAPM model and the conversion
functions can work with wind speed data at different heights as
long as the same height is used consistently throughout.
'''
net_absorptance = self.alpha - self.eta
u_const = self.u_const / net_absorptance
du_wind = self.du_wind / net_absorptance
u_low = u_const + du_wind * wind_fit_low
u_high = u_const + du_wind * wind_fit_high
b = - ((np.log(u_high) - np.log(u_low)) /
(wind_fit_high - wind_fit_low))
a = - (np.log(u_low) + b * wind_fit_low)
return dict(a=a, b=b)