Note
Go to the end to download the full example code
Calculating a module’s IV curves#
Examples of modeling IV curves using a single-diode circuit equivalent model.
Calculating a module IV curve for certain operating conditions is a two-step process. Multiple methods exist for both parts of the process. Here we use the De Soto model 1 to calculate the electrical parameters for an IV curve at a certain irradiance and temperature using the module’s base characteristics at reference conditions. Those parameters are then used to calculate the module’s IV curve by solving the single-diode equation using the Lambert W method.
The single-diode equation is a circuit-equivalent model of a PV cell and has five electrical parameters that depend on the operating conditions. For more details on the single-diode equation and the five parameters, see the PVPMC single diode page.
References#
- 1
W. De Soto et al., “Improvement and validation of a model for photovoltaic array performance”, Solar Energy, vol 80, pp. 78-88, 2006.
Calculating IV Curves#
This example uses pvlib.pvsystem.calcparams_desoto()
to calculate
the 5 electrical parameters needed to solve the single-diode equation.
pvlib.pvsystem.singlediode()
and pvlib.pvsystem.i_from_v()
are used to generate the IV curves.
from pvlib import pvsystem
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Example module parameters for the Canadian Solar CS5P-220M:
parameters = {
'Name': 'Canadian Solar CS5P-220M',
'BIPV': 'N',
'Date': '10/5/2009',
'T_NOCT': 42.4,
'A_c': 1.7,
'N_s': 96,
'I_sc_ref': 5.1,
'V_oc_ref': 59.4,
'I_mp_ref': 4.69,
'V_mp_ref': 46.9,
'alpha_sc': 0.004539,
'beta_oc': -0.22216,
'a_ref': 2.6373,
'I_L_ref': 5.114,
'I_o_ref': 8.196e-10,
'R_s': 1.065,
'R_sh_ref': 381.68,
'Adjust': 8.7,
'gamma_r': -0.476,
'Version': 'MM106',
'PTC': 200.1,
'Technology': 'Mono-c-Si',
}
cases = [
(1000, 55),
(800, 55),
(600, 55),
(400, 25),
(400, 40),
(400, 55)
]
conditions = pd.DataFrame(cases, columns=['Geff', 'Tcell'])
# adjust the reference parameters according to the operating
# conditions using the De Soto model:
IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_desoto(
conditions['Geff'],
conditions['Tcell'],
alpha_sc=parameters['alpha_sc'],
a_ref=parameters['a_ref'],
I_L_ref=parameters['I_L_ref'],
I_o_ref=parameters['I_o_ref'],
R_sh_ref=parameters['R_sh_ref'],
R_s=parameters['R_s'],
EgRef=1.121,
dEgdT=-0.0002677
)
# plug the parameters into the SDE and solve for IV curves:
SDE_params = {
'photocurrent': IL,
'saturation_current': I0,
'resistance_series': Rs,
'resistance_shunt': Rsh,
'nNsVth': nNsVth
}
curve_info = pvsystem.singlediode(method='lambertw', **SDE_params)
v = pd.DataFrame(np.linspace(0., curve_info['v_oc'], 100))
i = pd.DataFrame(pvsystem.i_from_v(voltage=v, method='lambertw', **SDE_params))
# plot the calculated curves:
plt.figure()
for idx, case in conditions.iterrows():
label = (
"$G_{eff}$ " + f"{case['Geff']} $W/m^2$\n"
"$T_{cell}$ " + f"{case['Tcell']} $\\degree C$"
)
plt.plot(v[idx], i[idx], label=label)
v_mp = curve_info['v_mp'][idx]
i_mp = curve_info['i_mp'][idx]
# mark the MPP
plt.plot([v_mp], [i_mp], ls='', marker='o', c='k')
plt.legend(loc=(1.0, 0))
plt.xlabel('Module voltage [V]')
plt.ylabel('Module current [A]')
plt.title(parameters['Name'])
plt.show()
plt.gcf().set_tight_layout(True)
# draw trend arrows
def draw_arrow(ax, label, x0, y0, rotation, size, direction):
style = direction + 'arrow'
bbox_props = dict(boxstyle=style, fc=(0.8, 0.9, 0.9), ec="b", lw=1)
t = ax.text(x0, y0, label, ha="left", va="bottom", rotation=rotation,
size=size, bbox=bbox_props, zorder=-1)
bb = t.get_bbox_patch()
bb.set_boxstyle(style, pad=0.6)
ax = plt.gca()
draw_arrow(ax, 'Irradiance', 20, 2.5, 90, 15, 'r')
draw_arrow(ax, 'Temperature', 35, 1, 0, 15, 'l')
print(pd.DataFrame({
'i_sc': curve_info['i_sc'],
'v_oc': curve_info['v_oc'],
'i_mp': curve_info['i_mp'],
'v_mp': curve_info['v_mp'],
'p_mp': curve_info['p_mp'],
}))

i_sc v_oc i_mp v_mp p_mp
0 5.235561 52.129783 4.742475 39.614016 187.868473
1 4.190781 51.483033 3.805721 39.867812 151.725757
2 3.144837 50.649228 2.861983 39.956701 114.355380
3 2.043319 56.987478 1.886789 47.278408 89.204377
4 2.070523 53.238567 1.901044 43.490203 82.676791
5 2.097727 49.474044 1.912108 39.735026 75.977656
Total running time of the script: (0 minutes 0.344 seconds)