pvlib.scaling.wvm#

pvlib.scaling.wvm(clearsky_index, positions, cloud_speed, dt=None)[source]#

Compute spatial aggregation time series smoothing on clear sky index based on the Wavelet Variability model.

This model is described in Lave et al. [1], [2]. Implementation is basically a port of the Matlab version of the code [3].

Parameters:
  • clearsky_index (numeric or pandas.Series) – Clear Sky Index time series that will be smoothed.

  • positions (numeric) – Array of coordinate distances as (x,y) pairs representing the easting, northing of the site positions in meters [m]. Distributed plants could be simulated by gridded points throughout the plant footprint.

  • cloud_speed (numeric) – Speed of cloud movement in meters per second [m/s].

  • dt (float, optional) – The time series time delta. By default, is inferred from the clearsky_index. Must be specified for a time series that doesn’t include an index. Units of seconds [s].

Returns:

  • smoothed (numeric or pandas.Series) – The Clear Sky Index time series smoothed for the described plant.

  • wavelet (numeric) – The individual wavelets for the time series before smoothing.

  • tmscales (numeric) – The timescales associated with the wavelets in seconds [s].

References