pvlib.pvsystem.PVSystem#

class pvlib.pvsystem.PVSystem(arrays=None, surface_tilt=0, surface_azimuth=180, albedo=None, surface_type=None, module=None, module_type=None, module_parameters=None, temperature_model_parameters=None, modules_per_string=1, strings_per_inverter=1, inverter=None, inverter_parameters=None, racking_model=None, losses_parameters=None, name=None)[source]#

The PVSystem class defines a standard set of PV system attributes and modeling functions. This class describes the collection and interactions of PV system components rather than an installed system on the ground. It is typically used in combination with Location and ModelChain objects.

The class supports basic system topologies consisting of:

  • N total modules arranged in series (modules_per_string=N, strings_per_inverter=1).

  • M total modules arranged in parallel (modules_per_string=1, strings_per_inverter=M).

  • NxM total modules arranged in M strings of N modules each (modules_per_string=N, strings_per_inverter=M).

The class is complementary to the module-level functions.

The attributes should generally be things that don’t change about the system, such the type of module and the inverter. The instance methods accept arguments for things that do change, such as irradiance and temperature.

Parameters:
  • arrays (Array or iterable of Array, optional) –

    An Array or list of arrays that are part of the system. If not specified a single array is created from the other parameters (e.g. surface_tilt, surface_azimuth). If specified as a list, the list must contain at least one Array; if length of arrays is 0 a ValueError is raised. If arrays is specified the following PVSystem parameters are ignored:

    • surface_tilt

    • surface_azimuth

    • albedo

    • surface_type

    • module

    • module_type

    • module_parameters

    • temperature_model_parameters

    • modules_per_string

    • strings_per_inverter

  • surface_tilt (float or array-like, default 0) – Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90)

  • surface_azimuth (float or array-like, default 180) – Azimuth angle of the module surface. North=0, East=90, South=180, West=270.

  • albedo (float, optional) – Ground surface albedo. If not supplied, then surface_type is used to look up a value in pvlib.albedo.SURFACE_ALBEDOS. If surface_type is also not supplied then a ground surface albedo of 0.25 is used.

  • surface_type (string, optional) – The ground surface type. See pvlib.albedo.SURFACE_ALBEDOS for valid values.

  • module (string, optional) – The model name of the modules. May be used to look up the module_parameters dictionary via some other method.

  • module_type (string, default 'glass_polymer') – Describes the module’s construction. Valid strings are ‘glass_polymer’ and ‘glass_glass’. Used for cell and module temperature calculations.

  • module_parameters (dict or Series, optional) – Module parameters as defined by the SAPM, CEC, or other.

  • temperature_model_parameters (dict or Series, optional) – Temperature model parameters as required by one of the models in pvlib.temperature (excluding poa_global, temp_air and wind_speed).

  • modules_per_string (int or float, default 1) – See system topology discussion above.

  • strings_per_inverter (int or float, default 1) – See system topology discussion above.

  • inverter (string, optional) – The model name of the inverters. May be used to look up the inverter_parameters dictionary via some other method.

  • inverter_parameters (dict or Series, optional) – Inverter parameters as defined by the SAPM, CEC, or other.

  • racking_model (string, default 'open_rack') – Valid strings are ‘open_rack’, ‘close_mount’, and ‘insulated_back’. Used to identify a parameter set for the SAPM cell temperature model.

  • losses_parameters (dict or Series, optional) – Losses parameters as defined by PVWatts or other.

  • name (string, optional)

  • **kwargs – Arbitrary keyword arguments. Included for compatibility, but not used.

Raises:

ValueError – If arrays is not None and has length 0.

Methods

__init__([arrays, surface_tilt, ...])

calcparams_cec(effective_irradiance, temp_cell)

Use the calcparams_cec() function, the input parameters and self.module_parameters to calculate the module currents and resistances.

calcparams_desoto(effective_irradiance, ...)

Use the calcparams_desoto() function, the input parameters and self.module_parameters to calculate the module currents and resistances.

calcparams_pvsyst(effective_irradiance, ...)

Use the calcparams_pvsyst() function, the input parameters and self.module_parameters to calculate the module currents and resistances.

dc_ohms_from_percent()

Calculates the equivalent resistance of the wires for each array using pvlib.pvsystem.dc_ohms_from_percent()

first_solar_spectral_loss(pw, airmass_absolute)

Use pvlib.spectrum.spectral_factor_firstsolar() to calculate the spectral loss modifier.

get_ac(model, p_dc[, v_dc])

Calculates AC power from p_dc using the inverter model indicated by model and self.inverter_parameters.

get_aoi(solar_zenith, solar_azimuth)

Get the angle of incidence on the Array(s) in the system.

get_cell_temperature(poa_global, temp_air, ...)

Determine cell temperature using the method specified by model.

get_iam(aoi[, iam_model])

Determine the incidence angle modifier using the method specified by iam_model.

get_irradiance(solar_zenith, solar_azimuth, ...)

Uses the irradiance.get_total_irradiance() function to calculate the plane of array irradiance components on the tilted surfaces defined by each array's surface_tilt and surface_azimuth.

i_from_v(voltage, photocurrent, ...)

Wrapper around the pvlib.pvsystem.i_from_v() function.

pvwatts_dc(g_poa_effective, temp_cell)

Calculates DC power according to the PVWatts model using pvlib.pvsystem.pvwatts_dc(), self.module_parameters['pdc0'], and self.module_parameters['gamma_pdc'].

pvwatts_losses()

Calculates DC power losses according the PVwatts model using pvlib.pvsystem.pvwatts_losses() and self.losses_parameters.

sapm(effective_irradiance, temp_cell)

Use the sapm() function, the input parameters, and self.module_parameters to calculate Voc, Isc, Ix, Ixx, Vmp, and Imp.

sapm_effective_irradiance(poa_direct, ...[, ...])

Use the sapm_effective_irradiance() function, the input parameters, and self.module_parameters to calculate effective irradiance.

sapm_spectral_loss(airmass_absolute)

Use the pvlib.spectrum.spectral_factor_sapm() function, the input parameters, and self.module_parameters to calculate F1.

scale_voltage_current_power(data)

Scales the voltage, current, and power of the data DataFrame by self.modules_per_string and self.strings_per_inverter.

singlediode(photocurrent, ...)

Wrapper around the pvlib.pvsystem.singlediode() function.

Attributes

num_arrays

The number of Arrays in the system.

Examples using pvlib.pvsystem.PVSystem#

Bifacial Modeling - modelchain

Bifacial Modeling - modelchain

Mixed Orientation

Mixed Orientation

Seasonal Tilt

Seasonal Tilt

Use different Perez coefficients with the ModelChain

Use different Perez coefficients with the ModelChain

Dual-Axis Tracking

Dual-Axis Tracking

Discontinuous Tracking

Discontinuous Tracking

4.7 MW CdTe single-axis tracking (OEDI System 9068)

4.7 MW CdTe single-axis tracking (OEDI System 9068)